bio<mark>energy</mark>2020+

Survey on European 2nd Generation Biofuels Technology Suppliers

Rita Ehrig

Michal Dallos

Wieselburg, May 2009

358 TR nK-IV-99

Survey on European

2nd Generation Biofuels Technology **Suppliers**

R.Ehrig M.Dallos

BIOENERGY 2020+ GmbH

Head Office Graz Branch Wieselburg Inffeldgasse 21 b 8010 Graz 3250 Wieselburg Austria

Rottenhauserstr. 1

T ++43(0)7416 522 38-10 F ++43(0)7416 522 38-99 www.bioenergy2020.eu centre@bioenergy2020.eu UID-Nr.: ATU 56877044

Com. reg.: FN 232244k District Court Graz

[358 TR nk-IV-99 2nd gen. BF technology providers, printed 05 Jun 2009]

Written by	Rita Ehrig	rita.ehrig@bioenergy2020.eu
	Michal Dallos	michal.dallos@bioenergy2020.eu
Date	26 th May 2009	
Report number	358 TR nk-IV-99	
Project number	nK-IV-99	
Customer:	Department of Foreign Affairs a Trade Comissioner Service Embassy of Canada Laurenzerberg 2 1010 Vienna	nd International Trade
	and	

Agriculture and Agri-Food Canada

Table of Contents

Lis	st of <i>i</i>	Abbrevi	ations	5
1	Intr	oductio	n	6
	1.1	Nomen	clature	6
2	Ove	rview o	n 2 nd generation biofuel production	7
	2.1	Produc	tion of Ligno-cellulosic Ethanol	7
		2.1.1	Crushing	7
		2.1.2	Pre-Treatment	7
		2.1.3	Hydrolysis	8
		2.1.4	Fermentation	9
		2.1.5	Distillation	9
		2.1.6	Overall process integration	10
		2.1.7	References	11
	2.2	2 Production of Synthetic Biofuels via Gasification		13
		2.2.1	Crushing	13
		2.2.2	Gasification	13
		2.2.3	Gas cleaning & upgrading	16
		2.2.4	Fuel synthesis	17
		2.2.6	Bio-SNG production	18
		2.2.7	Other Biofuels obtainable via Gasification	19
		2.2.8	References	19
	2.3	Anaero	bic Fermentation for Biogas Production	20
		2.3.1	Feedstock Preparation	20
		2.3.2	Biogas production	20
		2.3.3	Biogas Cleaning and Upgrading	22
		2.3.4	Biogas Compression	24
		2.3.5	Energetic Use of Biogas	24
		2.3.6	References	25
3	Tech	nnology	providers	26
	3.1	Ligno-c	cellulosic ethanol	26
	3.2	Synthe	tic Biofuels via gasification of wood	30
	3.2 Other technology providers for 2 nd generation biofuel plants 38			

3.4	Biogas	through fermentation of wet biomass	41
	3.4.1	Biogas plant manufacturers with upgrading to natural gas quality	41
	3.4.2	Biogas plant manufacturers providing standard turnkey biogas plan	ts 51
3.5	Selectio	on of research institutes in the field of 2nd generation biofuels	55
3.6	Referer	ices for Figures	70

Report

List of Abbreviations

а	Anno
AFEX	Ammonia Fiber Expansion
BtL	Biomass to Liquid process
CBP	Consolidated BioProcessing
CFB	Circulating Fluidized Bed
CHP	Combined Heat and Power plant/ process
CNG	Comprised Natural Gas
COD	Chemical oxygen demand
CtL	Coal to Liquid
d	Day
DME	Dimethylether
el	Electric
FT	Fischer Tropsch process
GtL	Gas to Liquid process
HDS	Hydrodesulphurisation
kW(h)	Kilo Watt (hours)
I	Litre
Nm³	Normal m ³
PN	Pressure stage
ppm	Parts per million
PSA	Pressure swing adsorption
SFB	Stationery fluidized bed gasifier
SHF	Separate Hydrolysis and Fermentation
SNG	Synthetic Natural Gas
SSCF	Simultaneous Sacchariffication and Co-Current Fermentation
SSF	Simultaneous Sacchariffication and Fermentation
t	Ton
therm	Thermal
UASB	Upflow anaerobic sludge blanket
MW	Megawatt
WCS	Whole crop silage

1 Introduction

The present report covers an overview of the European companies as well as selected R&D institutions dealing with 2^{nd} generation biofuel technologies. Following production technologies are covered:

- 1. Ethanol made from lignocelluloses
- 2. Biofuels made from synthesis gas; synthesis gas made from thermal gasification
- 3. Synthetic natural gas gained from thermal gasification
- 4. Biogas made through fermentation of wet biomass

The selection of the listed institutions was based on the expected attractiveness for the Canadian industry and politics.

1.1 Nomenclature

The categorization of the biofuels used in this report is as follows:

<u> 1^{st} Generation Biofuels</u>: are produced from natural resources with high energy density like vegetable oil, sugar or starch.

The typical representatives of 1st generation biofuels are: biodiesel, bio-ethanol, vegetable oil and biogas.

 2^{nd} Generation Biofuels: are made from the overall biomass (ligno-cellulosis = overall plant).

The typical representatives of 2nd generation process are ligno-cellulosic ethanol, Biomass to Liquid (BtL) and synthetic natural gas (SNG).

The principle ways of processing 2nd generation biofuels are shown in figure 1 below:

Figure 1: 2nd generation biofuel processing ways and products from cellulosic biomass

When multiple products are derived from biomass conversion processes like fuel, power and value added chemicals, this is often referred to as a biorefinery.

2 Overview on 2nd generation biofuel production

2.1 Production of Ligno-cellulosic Ethanol

In contrast to the traditional bio-ethanol production from sugar and starch, the production based on ligno-cellulosic material requires additional processing steps. The reason is that the cellulose (source of C_6 sugars such as glucose) as well as hemicellulose (mainly source of C_5 sugars such as xylose) is not accessible to the traditional bio-ethanol producing micro-organisms.

Following processing steps may be found in a general ligno-cellulose to bio-ethanol production process:

Figure 2: Ligno-cellulose to bio-ethanol processing chain

2.1.1 Crushing

Within the crushing step the biomass is milled or chipped to a smaller size better suitable for the further accessing in pre-treatment. This step is technologically proved.

2.1.2 Pre-Treatment

The main purpose of the pre-treatment is the destruction of the lignin shell protecting the cellulose and hemi-cellulose material, decreasing the crystallinity of the cellulose and increasing the porosity of the material. Only after breaking this shell the sugar containing materials become accessible for hydrolysis. The main products of this processing step are the released cellulose, hemi-cellulose and fragments of lignin.

In dependance of the intensity of the pre-treatment various undesired side-products may be obtained (such as phenol-compounds from lignin or organic acids, anorganic salts) often inhibiting the

Figure 3: Pre-treatment of ligno-cellulose for bio-ethanol production according. Source: Genome Management Information System ORNL

consecutive micro-biological hydrolysis and/or fermentation processing steps.

A general classification of the pre-treatment methods into three groups may be undertaken:

Chemical pre-treatment

The chemical pre-treatment is one of the first methods known and used in pratice. The typical methods are using acids or lyes to access the ligno-cellulose. The big disandantage of the chemical pre-treatment methods are corrosion problems, enviromental problems as well as the risk of processed material degradation. The curret R&D focus in chemical pre-treatment lies in the use of organosolv and ionic liquids.

Physical pre-treatment

The most common representant of the physical pre-treatment of ligno-celluloses is the stream explosion methods. Withing this approach the biomass is mixed with steam of high pressure and temperature (20-75 bar and 180-280°C) und suddenly expanded. Several demostration facilitites are currently using the steam explosion method for pre-treatment. The obtained cellulosis is highly porous and suitable for hydrolysis. The disadvantage of this method is the high energy demand.

Similar methods can be based on other media as well, such as amonia (AFEX Amonia Fiber Explosion), CO_2 explosion or water (LHW – Liquid Hot Water method)

Biological pre-treatment

The biological pre-treatment methods are in a strong focus of R&D. The principles are based on the use of funghies (white-rot funghi, brown-rot funghi,...) or selected bacterias degrading the structure of ligno-cellulose. The advantages are obvious: low energy consumption, almoust no chemicals, no corrosion problems. The current big disadvantage is the duration of the degradation process (usually measured in weeks) leading to incaceptable duration in terms of industrial use.

2.1.3 Hydrolysis

The main purpose of the hydrolysis is the splitting of the polymeric structure of ligninfree cellulosic material into sugar monomers in order to make them ready for fermentation. At this stage we should distinguish between the hydrolysis of the C_5 dominated hemi-celluloses and the hydrolysis of the C_6 dominated celluloses.

<u>Hydrolysis of the Celluloses:</u> also acid hydrolysis of the celluloses is possible and has been applied previously; the current state-of-art method is the enzymatic hydrolysis by cellulase enzyme complex produced for example by the fungus Trichoderma Reesei. <u>Hydrolysis if the Hemi-Celluloses:</u> In contrast to the crystalline structure of cellulose, the hemi-cellulose has mainly an amorphous structure. This results in a significantly easier way of hydrolysis. The hydrolysis of hemi-celluloses may be performed by diluted acids, bases or by appropriate hemi-cellulose enzymes. In several process set-ups these hydrolysis happens already in the pre-treatment step.

2.1.4 Fermentation

The fermentation of the C_5 and C_6 sugars obtained from the pre-treatment and hydrolysis of ligno-cellulose faces several challenges:

- Inhibition from various by-products of pre-treatment and hydrolysis such as acetates, furfural and lignin. The impact of these inhibitors is even lager on the C₅ sugar processing.
- Inhibition form the product itself = inhibition by bio-ethanol leading to low titer (ethanol concentration)
- ➤ Low conversion rates for the C₅ sugars

The mentioned difficulties are leading to higher investment costs, high energy and process water demand due to low titer (yield of ethanol in fermentation) as well as high demand for enzymes.

2.1.5 Distillation

The upgrading of ethanol from the lower concentrations in beer towards the required 99,6% $^{V}/_{v}$ is performed using the known and widely applied technological steps:

- > Evaporation of ethanol from beer: in this step the first evaporation of ethanol is performed in order to obtain 'crude' ethanol with concentration ~45% $^{V}/_{v}$.
- > Rectification: in rectification the ethanol concentration in increased to $\sim 96\% V/_V$
- Dehydration: In the dehydration the remaining azeotropic water is removed in order to obtain the fuel bio-ethanol with concentration 98,7% ^m/_m and water content below 0,3% ^m/_m.

2.1.6 Overall process integration

Particularly of in case enzymatic hydrolysis various overall process integrations are possible. Common toi all processes is the pre-treatment requirement. The processes shown in the figure differ in the alignment of the hydrolysis, C₅ fermentation and C₆ fermentation steps. It is clear, that in the practical implementation there will be various modifications to the mentioned methods.

Figure 4: Process integration steps in the lignocellulose ethanol production

SHF – Separate Hydrolysis and Fermentation

There are two variations of the SHF process. In the first processing variant the C_5 and C_6 fermentation is performed sequentially. The overall material enters the enzymatic hydrolysis, and then the C_6 fermentation is performed, followed by ethanol distillation continued by C_5 fermentation. In the second variant the soluble C_5 sugars are separated already in the hemi-cellulose hydrolysis (means shortly after pre-treatment), the C_5 and C_6 fermentation is performed in parallel leading to a common beer distillation step.

Figure 5: Two basic variants in the SHF process integration

SSF – Simultaneous Sacchariffication and Fermentation

For the SSF process integration it is characteristic, that the C_6 hydrolysis und C_6 fermentation are performed in one common step. Beside this a hemi-cellulose hydrolysis (if not integrated in the pre-treatment step) and the C_5 fermentation are performed.

SSCF - Simultaneous Sacchariffication and Co-Current Fermentation

In the SSCF process the saccharificaton of C_5 and C_6 sugars as well as the co-current fermentation of both sugars is performed directly after the pre-treatment. It is obvious, that such a set-up is more advanced comparing to SHF and SSF processes, due to a significant technology simplification leading to investment cost savings.

CBP - Consolidated BioProcessing

The CBP - Consolidated BioProcessing means the unification of the cellulase production, hydrolysis and fermentation of the C₅ and C₆ sugars into a single processing step. This is possible only by the "creation" of a suitable organism community providing the required enzymes directly within the reactor. Hence, the processing focus is shifted from an enzymatic towards a microbial approach. From today's point of view, the establishment of CBP as the consolidation of the 4 mentioned steps within the biomass to bio-ethanol conversion would mark the significant step forward, in terms of efficiency and simplicity of the process.

2.1.7 References

- Taherzadeh M.J. and Karimi K.: Int.J.Mol.Sci.: "Pretreatment of Ligno-cellulosic Wastes to Improve Ethanol and Biogas Production: A Review"; (9), 2008, 1621-1651
- Hamelinck C.N., Hooijdonk G. and Faaij A.P.C: "Prospects for ethanol from lignocellulosic biomass: Techno-economic performance as development progresses"; November 2003
- DOE/SC-0095: "A Research Roadmap Resulting from the Biomass to Biofuels Workshop"; June 2006
- prEN 15376:2006: "Automotive fuels Ethanol as blending component for petrol Requirements and test methods"
- Aden A. et.al.: Ligno-cellulosic Biomass to Ethanol Process Design and Economics Utilizating Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover; NREL/TP-510-32438
- Lynd L.R., Weimer P.J., Zyl, W.H. and Pretorius I.S.: Microbiology and Molecular Biology Reviews: Microbial Cellulose Utilization – Fundamentals and Biotechnology; (66), 2002, 506-577

Zhao H. et al.: "Regeneration cellulose from ionic liquids for an accelerated enzymatic hydrolysis"; J.Biotechnol. 2008 (doi: 10.1016/j.jbiotec.2008.08.009)

2.2 Production of Synthetic Biofuels via Gasification

The production of biofuels using the biomass-to-liquid process (BtL) differs significantly from the ligno-cellulosic ethanol production. Within the BtL production scheme the biomass is first thermally fragmented to (product / synthesis) gas, consisting of rather simple molecules such as: hydrogen, carbon monoxide, carbon dioxide, water, methane... After gas upgrading the synthesis gas is used for BtL fuel production.

Figure 6: Synthetic biofuel processing chain

2.2.1 Crushing

Before the biomass material enters the gasifier it hat to be broken-up to a suitable size. The size is dependent on the type on the type of gasification.

2.2.2 Gasification

Gasification differs significantly from combustion as well as from pyrolysis and liquification. Combustion takes place under excess of air ($\lambda > 1$) and under high temperatures, resulting in heat production, exhaust gas and ashes, leading to complete oxidation of the fuel.

Gasification takes place under shortage of oxygen (typical $\lambda = 0,2-0,5$) with two products: product gas and solid by-product (either char or ashes).

The gasification processes may be divided according to the used gasification agent and the way of the heat supply. Typical gasification agents are: oxygen, water, and air (not suitable for consecutive bio-fuels production due to nitrogen content). In dependence of the heat supply we distinguish between two process types. Within the autotherm processes the heat is provided through a partial combustion of the processes material within the gasification stage. In the second type of processes, the allotherm processes, the heat is provided externally via heat exchangers or heat transferring medium. In this processes the heat may come from a combustion of the processed material (means, combustion and gasification are physically separated) or from external sources.

Types of gasifiers

Based on the way, how the fuel is brought into contact with the gasification agent, there are three main types of gasifiers:

- Fixed-bed gasifier
 - o Updraft gasifier
 - Downdraft gasifier
- Fluidized bed gasifier
 - o Stationery fluidized bed (SFB) gasifier
 - o Circulating fluidized bed (CFB) gasifier
- Entrained flow gasifier

For biomass production typically only fluidized bed gasifier and fuel gasifier are used, which are described in the following sections.

Stationery fluidized bed (SFB) gasifier

In the fluidized bed gasifier the bed material behaves like a highly turbulent fluid leading to a fast mixing of the fuel material with the bed material. This results in a rapid pyrolysis and uniform processing conditions within the reactor (no reaction zones are observable as typical for the fixed-bed reactors). The bed material (for example quartz sand) forms a suspended, "bubbling", highly turbulent fluidized bed with an observable bed surface.

The fluid-bed gasifier can process materials with higher ash-content as typical for biomass and in general this type of gasifiers is better suitable for large-scale operations (typically above 10 MW_{th}).

Figure 7: Stationary fluidized bed (SFB) gasifier

Circulating fluidized bed (CFB) gasifier

The set-up of the circulating fluid-bed gasifier is similar to the stationary fluid-bed gasifier with the main difference that gasification agent enters the reactor in velocities leading to carry away of the bed material. Comparing to the SFB gasifiers, there is no bed surface observable. The bed material is distributed in the complete reactor with higher densities in bottom sections. The bed material as well as ash are separated from the product gas in the cyclone stage and are recycled back to the reactor.

Figure 8: Circulating fluidized bed (CFB) gasifier

Fluid-bed gasifier: Circulating fluidized two-bed gasifier

Figure 9: Circulating fluidized two-bed gasifier [1]

In the circulating fluidized two-bed gasifier the circulating bed material is used as heat carrier. In this set-up the gasification is performed in one fluidized bed, the bed material is transferred into the second bed, where the required gasification heat is generated by combustion of a part of the processed. The heated-up bed material is transferred back to the gasification bed. The main advantages of this system are the possibility to optimize the combustion and gasification part separately.

Entrained Flow Gasifier

The entrained flow gasifier differs significantly from the gasifiers described previously. The processed material enters the gasifier at the top, together with the gasification agent. Comparing to other gasifiers there is an additional pilot flame providing the initial energy demand.

The entrained flow gasifier is typically used for the gasification of fossil sources (crude oil, natural gas and charcoal). However, in combination with an upstream low-temperature pyrolysis step this process may be applied to biomass material as well (otherwise a suitable external pilot flame feed is required). In this case the pyrolysis gas from the low temperature step is used as pilot flame fuel and the pyrolysis char is the processed material.

Figure 10: Entrained flow gasifier

2.2.3 Gas cleaning & upgrading

After leaving the gasifier, the product gas has to be cleaned and in dependence on the further processing steps upgraded.

Gas cleaning

The obvious reasons for gas cleaning are the prevention of corrosion, erosion and deposits in the process lines as well as the prevention of poisoning of catalysts. Following typical impurities are found in the product gas:

- Dust and alkali metal compounds
- > Tar
- Sulfur compounds
- > Nitrogen and chloride (halogenide) compounds

Gas upgrading

Several processed are subsumed under the term gas upgrading:

- Water-gas-shift (WGS) reaction:
 - Using the (reversible) water-gas-shift reaction:

 $\mathsf{CO}\ +\ \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{CO}_2\ +\ \mathsf{H}_2$

the CO / H_2 ration may be modified in order of obtain the ration of H_2 / CO = 1,5-3,0 as typically required by the consecutive fuel synthesis reaction

➢ Gas reforming:

Using the gas reforming reactions, the short-chain organic molecules may be converted to CO and H_2 be the following endothermic reaction (example for steam – methane reforming):

 $CH_4 \ + \ H_2O \leftrightarrow CO \ + \ 3 \ H_2$

Removal of inert gas fractions – mainly CO₂: CO₂ is on one hand inert in the subsequent reactions, however, it will increase the requirements for apparatuses and energy demand (for example for compression steps), and hence a removal is advantageous.

2.2.4 Fuel synthesis

Starting from the synthesis gas (=the cleaned und upgraded product gas from the gasification) several fuel processing ways are possible. Using (thermo-) chemical processes such as Fischer-Tropsch (providing diesel / gas like biofuel) or methanol synthesis also biotechnological processing towards alcohols are possible.

Fischer-Tropsch Synthesis

The most widely used fuel synthesis process is the FT process invented in the 1920-ties by Germans Franz Fischer and Hans Tropsch. Currently the FT reaction is successfully used for fuel production from coal (CtL = Coal-to-Liquid) or natural gas (GtL = Gas-to-Liquid).

Based on the reaction temperatures and pressures, there are two process types used for the FT synthesis:

• HTFT – High Temperature Fischer-Tropsch Synthesis:

The typical HTFT process conditions are temperatures of 300-350°C and pressures of 20-40 bar. The products obtained at this temperature have "light" character, means this process may be used for production of the basic petrochemical materials (ethylene, propylene...) as well as gas production.

• LTFT – Low Temperature Fischer-Tropsch Synthesis:

The low temperature FT – counterpart takes place at temperatures about 200-220°C and pressures below 20 bar. This technology provides higher-boiling products, hence is more suitable for diesel production.

The FT synthesis is catalyzed by various catalysts based on iron, cobalt, ruthenium, nickel. Due to economic reasons currently only iron (HTFT) and cobalt (HTFT & LTFT) catalysts are widely used.

Upgrading of the raw FT Product

The raw Fischer-Tropsch product as provided by the synthesis consists of a distribution of molecules, ranging from gaseous compound, through liquid fraction ending with solid wax fraction (at room temperature) the direct use as fuel is not possible. Even the amount of the desired fraction (petrol or diesel) may be significantly increased through a suitable process control; following additional upgrading steps may be required:

- Distillation: using distillation the obtained row FT product is splitted into fraction, the fractions may be further processes as required
- ➤ Hydration and isomerization of the C₅-C₆ fraction (for petrol use): in order to increase the octane number the mainly linear alkanes are isomerized
- Reforming of the C₇-C₁₀ fraction (for petrol use): is used to increase the octane number (as well as the content of aromatics)
- (Hydro- / fluid catalytic) cracking: converting long-chain fractions into petrol and diesel fraction by application of hydrogen under high pressure

2.2.6 Bio-SNG production

The product gas obtained by gasification may be alternatively used to produce bio-SNG (synthetic natural gas). Starting from the product gas the first step, which has to be performed is the methanation:

Methanation

In the methanation the carbon monoxide and the hydrogen react to methane and water:

 $\begin{array}{l} \text{CO} + 3 \ \text{H}_2 \leftrightarrow \text{CH}_4 + \text{H}_2 \text{O} & (\text{reverse to the steam methane reforming reaction}) \\ \text{CO}_2 + 4 \ \text{H}_2 \leftrightarrow \text{CH}_4 + 2 \ \text{H}_2 \text{O} \end{array}$

The reaction is catalyzed typically by nickel oxide catalysts. The formation of carbon (coking) is a possible undesired side reaction of this process.

Bio-SNG upgrading

The upgrading of the raw bio-SNG obtained by methanation consists mainly of increase of the CH_4 concentration and cleaning. These steps are similar to the biogas upgrading technology described in the section 2.3.3. Further a compression of the obtained product is required (see also 2.3.4).

2.2.7 Other Biofuels obtainable via Gasification

The gas obtained by gasification of biomass may be used to produce a variety of chemical compound hence also to produce biofuels. Selection of some alternatives is listed below:

Dimethylether (DME)

DME may be used as fuel or as a basis of the synthesis of other chemicals. The production of DME from the synthesis gas is based on the following exothermic reactions:

 $2 \text{ CO} + 4 \text{ H}_2 \leftrightarrow \text{H}_3\text{C-O-CH}_3 + \text{H}_2\text{O}$ $3 \text{ CO} + 3 \text{ H}_2 \leftrightarrow \text{H}_3\text{C-O-CH}_3 + \text{CO}_2$

The above reactions can be performed in continuous fixed bed or slurry reactors. The catalysts are based on a mixture of cupper, zinc- and aluminium oxides.

Ethanol and higher alcohols

Beside DME also alcohols may be produced from synthesis gas. For example the ethanol synthesis follows the following reaction:

$$3 \text{ CO} + 3 \text{ H}_2 \leftrightarrow \text{C}_2\text{H}_5\text{OH} + \text{CO}_2$$

This way of ethanol production may be seen as alternative to the ligno-cellulosic ethanol production.

2.2.8 References

- Fürnsinn S. and Hofbauer H.: Synthetische Kraftstoffe aus Biomasse: Technik, Entwicklung, Perspektiven; Chem.Ing.Tech. 79(5), 2007, 579-590
- Aadesina A.A.: Hydrocarbon synthesis via Fischer-Tropsch reaction: Travails and triumphs; Appl. Cat. A: 138, 1996, 345-367
- Dry M.E.: The Fischer-Tropsch process: 1950-2000; Catal.Today 71(3-4). 2002, 227-241

2.3 Anaerobic Fermentation for Biogas Production

Biogas can be obtained from a broad range of input material consisting of proteins, carbohydrates and lipids like biowaste, animal manure, silage etc. After a preparation stage the substrate is decomposed and fermented under anaerobic condition by enzyme releasing bacteria. For reaching a higher energy value the produced biogas may be cleaned and up-graded to natural gas quality as well as compressed, see Figure 11. The final product, Bio-Methane can be used as vehicle fuel.

Figure 11: Biomass to bio SNG (upgraded biogas) processing chain

2.3.1 Feedstock Preparation

The process and amount of substrate preparation decides on the degradation rate of substrates and thus the exploitation of the energetic substrate potential. Thereby the pre-treatment has to cope with both legal requirements like sanitation and the living conditions of micro organisms, which create the aimed product methane. The following processes are carried out for the pre-treatment of substrates:

- Sorting and Separation of extraneous material such as rock, particularly appearing in biowaste
- Sanitation through heating up materials to 70 °C (often legally required)
- **Crushing** to open up the substrate surface for biological degradation
- **Slurrying** for producing pumpable substrates suitable for substrate transport into the digester (i.e. through adding liquid manure or water)
- **Homogenisation** of the pumpable substrates is achieved by paddle mixers/ agitators important for producing a homogenous substrate composition and thus for stabilisation of the fermentation process

2.3.2 Biogas production

<u>Hydrolysis</u>

The waste processed material consists mainly of carbohydrates, lipids, proteins and inorganic materials. In the first processing step, the hydrolysis, the complex compounds

of the input material are decomposed into elementary organic compounds like amino acids, sugar and fatty acids. The bacteria taking active part in this process therefore release extracellular enzymes. This process is known as polymer breakdown stage. These enzymes decompose the material in a biochemical process. For example, the cellulose consisting of polymerized glucose is broken down to dimeric, and then to monomeric sugar molecules (glucose) by cellulolytic bacteria.

Acidogenic phase

After hydrolysis the formed intermediate products such as monomeric glucose are used in the acidogenic stage. Through acid-forming bacteria and under anaerobic condition the intermediate products with molecules of six atoms of carbon (glucose) are broken down into low fatty acids (acetic acid, propionic acid and butyric acid) and carbohydrates. Besides, lower amounts of alcohols (ethanol) and lactic acid are formed.

Acetogenic phase

In the acetogenic phase the products generated in the acidogenic phase are bacterially converted into precursor substances of biogas (acetic acid, hydrogen, CO₂). Too high contents of hydrogen are harmful for the acetic acid forming bacteria. Therefore the creators of acetic acid have to constitute a symbiotic community with the bacteria of the methanogenic phase. The latter consume hydrogen when creating methane and thus provide acceptable living conditions for the acetogenic bacteria.

Methanogenic phase

Within the methanogenic phase methane is formed out from the acetogenic products by methanogenic bacteria. The reactions taking place in the methanization process result in many products, by-products and intermediate products and follow several equations:

 $CH_{3}COOH \rightarrow CH_{4} + CO_{2}$ Acetic acid \rightarrow Methane + Carbon dioxide

2 CH₃CH₂OH + CO₂ → CH₄ + 2 CH₃COOH Ethanol + Carbon dioxide → Methane + Acetic acid

 $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$ Carbon dioxide + Hydrogen \rightarrow Methane + Water

In single-stage plants all degrading stages are jointly proceeded in one digester, for which the different required environmental conditions for the degrading bacteria have to be balanced. In two-stage plants, where the first 2 and the last 2 steps are processed in place often higher decomposition performances can be reached.

Chemical composition of biogas

The produced biogas is a mixture of gases, which is composed of about one third carbon dioxide (CO_2) and two third methane (CH_4) . The average composition of biogas by elements is presented in Table 1.

Element	Concentration (Variations)
Methane (CH ₄)	50 -75 Vol.%
Carbon dioxide (CO ₂)	25 – 45 Vol.%
Water (H ₂ O)	2 (20°C) – 7 (40°C) Vol. %
Hydrogen sulphide (H ₂ S)	20 – 20,000 ppm (2 Vol. %)
Nitrogen (N ₂)	< 2 Vol. %
Oxygen (O ₂)	< 2 Vol. %
Hydrogen (H ₂)	< 1 Vol. %

Table 1: Ingredients of biogas (average values) [2]

For energetic use of biogas the methane content is relevant. The share of methane in the biogas mixture is influenceable only to a certain extent. Anyhow for the most common biogas production process via wet fermentation the methane concentration is dependent from several parameters like

- **Composition of input material**: For instance lipid rich and thus low in oxygen material produces higher quality gas than carbohydrates or proteins.
- Water content of the substrate: The thinner the fluid the more CO₂ is solved in water and the more methane is in the biogas.
- **Fermenting temperature**: The higher the temperature is the lower is the CO₂ content.
- Dwell time, substrate pre-treatment and the degree of substrate decomposition.

Besides wet fermentation the rather uncommon process of dry fermentation can be an alternative for not liquid or pumpable raw material. The conversion to biogas takes place in anaerobic condition and with a substrate moisture of 60 - 80 % (dry matter content of 20 - 40 %) in the digester. Particularly within discontinuous processes the digester content is not stirred. Though there are some dry fermentation providers on the market, the process is not completely developed.

2.3.3 Biogas Cleaning and Upgrading

Biogas has to be cleaned and upgraded for specific energetic uses. The removal of H_2S is most often an advantage, whilst the removal of CO_2 makes sense just for feed-in into the natural gas grid or for application as vehicle fuel.

	H ₂ S	H ₂ O	CO ₂
Gas burner	> 0.1 Vol. %	No	No
СНР	> 0.05 Vol. %	No	No
Bio-SNG	Yes	Yes	Yes
natural gas grid	Yes	Yes	Yes
Torch	No	No	no

Table 2: Necessity of biogas cleaning for different utilisation purposes [2]

The cleaning and upgrading of biogas is particularly required for increasing the methane content and reaching natural gas quality, which consists of 98 % methane. For this upgrading primarily the processes drying, desulphurisation and the separation of methane and carbon dioxide are necessary.

<u>Drying</u>

In order to defend the gas processing aggregates from abrasion and destruction, the containing water vapour has to be separated from biogas. Through chilling of the gas most often within the gas pipeline a part of the water vapour is condensed. With the help of a gradient in the gas pipe and an installed condensate separator the water is collected.

Desulphurisation

For desulphurisation biological, chemical and physical processes can be applied. In general, the processes include a conversion of H_2S into elementary sulphur or prohibit the disposal of H_2S , which can be directly applied in the digester or outside.

Removal of Carbon Dioxide (Methane Accumulation)

With the removal of CO_2 from biogas the methane content in biogas is enriched and thus the energy value is enhanced. The following CO_2 removal processes are most common:

- Water scrubbing: In this physical absorption process the biogas is pressurised and fed to the bottom of a packed column where water is fed on the top and so the absorption process is operated counter-currently. Water scrubbing can also be used for selective removal of hydrogen sulphide since it is more soluble than CO₂ in water.
- Pressure Swing Adsorption (PSA): In this process the raw biogas is compressed to 4 – 7 bar. The compressed biogas is then streamed into an adsorption column on zeolites or activated carbon molecular sieves. The adsorption material adsorbs hydrogen sulphide irreversibly and is thus poisoned by hydrogen sulphide. For this reason a hydrogen sulphide removing step is often included in the PSA process.

Aggregates for these rather complex upgrading processes are currently produced in fewer quantities and thus are relatively expensive.

2.3.4 Biogas Compression

The raw biogas is available with pressure about 1 bar. For the access of the biogas facility to the natural gas grid several pressure stages have to be overcome. Depending from the respective grid the compression to pressure levels up to 20 bar are necessary.

For the use as vehicle fuel or storage in compressed gas cylinders a more intensely compression up to 200 bar is necessary to obtain adequate energy densities. In the latter case the targeted pressure can only be achieved by multistage compression.

2.3.5 Energetic Use of Biogas

<u>Use as Biogas</u>

Most gasoline driven vehicle engines can be adapted for additional operation with biogas. Several municipalities have introduced own bus fleets or disposal vehicles like in Sweden or Switzerland. For the use of biogas as Bio-SNG it has to be cleaned from CO_2 , water vapour and H_2S (see 2.3.7) and comprised to 200 bar.

Natural gas feed-in

Particularly where there is no demand of heat, the feed-in of biogas into the natural gas grid makes sense. Therefore gas cleaning for removal of CO_2 and H_2S and gas drying (see 2.3.7) are pre-condition preparation steps.

Thermal use

Applicable along a broad range of biogas compositions, biogas can be used in most biogas capable combustion facilities for heat use only.

Use in CHP plants

Most common and highly efficient is the use of biogas in CHP plants with gas Otto engines, gas diesel engines or (for capacities between 1 and 10 MW) gas turbines. Thus produced power is used on-site or fed-in into the public power grid. The waste heat is conducted via heat transmission for heating of buildings or for use as process energy.

Use in combustion engines

Biogas is applicable for stationary and mobile combustion engines (most often in gasoline engines), thereby converted into mechanical energy. The gas mixture for gas engines has to be knock proof with a methane number between 78 and 98, which is then applicable for market available engines.

2.3.6 References

- Agency for Renewable Resources e.V. (FNR, 2006): Handreichung Biogasgewinnung und –nutzung (Handbook Biogas production and use). Written by Institute for Energetics and Environment gGmbH, Federal Agricultural Research Centre Germany and Association for Technology and Structures in Agriculture, 3rd edition. Gülzow.
- Fraunhofer Institute for environmental, safety and energy technology (Fraunhofer UMSICHT 2009): Technologies and costs of biogas upgrading and feed-in into the natural gas grid. Results of the market research 2007 2008. Version 03.03.2009. Oberhausen.
- Hartmann, H./ Kaltschmitt, M. (2001): Energy from biomass Fundamentals, Technologies and Processes. Springer Verlag. Berlin, Heidelberg, New York.
- Jönsson, O. (2007): Biogas upgrading and use as transport fuel. Swedish Gas Centre. Malmö.
- University of Rostock, Department for Process Engineering and Biotechnology/ Institute for Energetics and Environment/ Federal Research Agency for Agriculture (2007): Biogas production through dry fermentation of organic residues, byproducts and wastes from agriculture. Final report. Rostock, Leipzig, Braunschweig.

3 Technology providers

3.1 Ligno-cellulosic ethanol

Company Name	ANDRITZ AG	
Contact Details	Stattegger Strasse 18 8045 Graz Austria	
	phone: +43 316 6902 2990 fax: +43 316 6902 453	
	ANDRITZ Ltd. (Canada) 2260 32nd Avenue, Lachine Quebec H8T 3H4 Canada	
	phone: +1 (514) 631 7900 x 5231 fax: +1 (514) 631 3995 e-mail: <u>thomas.pschorn@andritz.com</u> web: <u>www.andritz.com</u>	
Core Competences	 Andritz operates in the field of 2nd generation biofuels and provides the following technologies. Bio-chemical / sugar platform (pre-treatment systems for steam-explosion, advanced steam-explosion, AFEX, dilute acid): Reactor and gasifier feed equipment, Biomass Pre-treatment including impregnation, Liquid/ Solid separation of bio-reactor slurries Reactors/ digesters, in regular stainless steel and in higher corrosion resistance alloys like incoloy, hastelloy, zirconium Decompression (steam explosion systems), Washing and dewatering components Separate systems are available for C₅ and C₆ sugars, optimisation of heat/ energy balance, systems for merging, washing etc. Systems with processing several thousand tons of input material are available derived from those used in the cellulose production. Thermo-chemical platform: Andritz has own know-how in thermal gasification of biomass, gas cleaning etc. and biomass steam boiler, gasifier feed-systems. 	

References	For the sugar platform Andritz has developed respective components for pilot & demo plants, some of them are running for a few months now. Andritz has also developed an own system for the "front end" (advanced steam-explosion pre-treatment), installed before the enzymatic hydrolysis and fermentation. Several orders for this technology are executed by Andritz. Typical feedstocks are wood chips, particularly hard wood and wooden biomass (e.g. shrub willow, hybrid poplar), bagasse, energy crops like miscanthus, sorghum, switchgrass and agricultural residues (straw from cereals and maize, maize cobs).
Figure	Andritz special plug feeder / Modular Screw Device feeding a high pressure reactor in a pre-treatment system for ligno-cellulosic ethanol, in operation since 2009 [3]

Company Name	BioGasol ApS		
Contact Details	Lautrupvang 2A 2750 Ballerup Denmark	(III) GRSDL	
	phone: +45 8820 4879 fax: +45 4468 4880 e-mail: <u>info@biogasol.com</u> web: <u>www.biogasol.com</u>		
Core Competences	BioGasol is a combined biotechnology and engineering company in the field of renewable energy. The core competences lie in the development and design of process technologies for the production of bio-ethanol and other energy products from ligno-cellulosic biomasses.		
	BioGasol has developed a new highly efficient and cost effective pre-treatment process for the opening of ligno-cellulosic biomasses and a unique C5-fermentation which allows the conversion of all carbohydrates available in the biomass into ethanol and to increase and maximize the ethanol yield remarkably. It is combined with a biogas process		
	 The BioGasol Concept consists of the f Pre-treatment Hydrolysis Fermentation Anaerobic digestion of process 	 BioGasol Concept consists of the following process steps: Pre-treatment Hydrolysis Fermentation Anaerobic digestion of process water and recirculation 	
Reference	Ligno-cellulosic ethanol pilot plant, Ballerup (Sweden)		
	Initial operation: 2006 Input: ligno-cellulosic biomass Output: pilot plant 13 t/a; demonstration plant 6,000 t/a Technology: pre-treatment by steam explosion/ wet oxidation, hydrolysis, glucose fermentation by yeast, liquid fraction to xylose fermentation using thermophilic anaerobic bacterium, biogas production		

Company	SEKAB		
Name Contact Details	Box 286 891 26 Örnsköldsvik Sweden		
	phone: +46 (0)660 758 00 fax: +46 (0)660 549 03 e-mail: <u>info@sekab.com</u> web: <u>www.sekab.com</u>		
Core Competences	SEKAB Group is one of Europe's leading ethanol producers. It produces and distributes bio-ethanol fuel and green chemical products. Moreover it works on the development of ligno-cellulose-based ethanol processing.		
	SEKAB has built up a pilot plant next to its R&D department. During the first two years of the plant's operation, the focus has been on accessibility, operational safety and process monitoring. A large number of process refinements have been made, especially in regard to the hydrolysis reactors.		
	Another EU-funded project SEKAB is involved as project partner is NILE (New Improvements for Ligno-cellulosic Ethanol). The project's over-arching goals are to develop cost-effective, environmentally-sound methods for the mass production of ethanol as a vehicle fuel. A commercial plant with 120,000 m ³ /a is in projection and should be		
	realised in 2014. The further activities of SEKAB in the area of ligno-cellulosic ethanol are currently not clear, see: <u>http://virtual.vtt.fi/virtual/amf/news/amfinewsletter2009_2april.pdf</u>		
References	Ligno-cellulosic bio-ethanol plant in Örnsköldsvik (Sweden) [4]		
	Initial operation: 2004 Input: wood chips from pine trees, bagasse from sugar cane, energy grass Output: 50 t/a Technology: Hydrolysis, fermentation, distillation; plant runs continuously by shifts		

3.2 Synthetic Biofuels via gasification of wood

Company Name	Abengoa Bioenergy S.A.	
Contact Details	Paseo de la Castellana, 31 - 3 Plat. 28046 Madrid Spain	ABENGOA Innovative solutions for sustainability
	phone: +34 91 319 70 70 fax: +34 91 308 52 42 e-mail: <u>abengoabioenergy@abengoa.com</u> web: <u>www.abengoabioenergy.es</u>	
	Abengoa Corporate US, St. Louis 16150 Main Circle Drive, Suite 300 Chesterfield MO 63017-4689	
	phone: +1 636 728 0508 fax: +1 636 728 1148 e-mail: <u>abengoabioenergy@abengoa.com</u>	
Core Competences	The Abengoa Bioenergy R&D division works on biorefinery processes with particular focus on ligno-cellulosic ethanol production through enzymatic hydrolysis and gasification of biomass to synthetic biofuels.	
	Agricultural residues with polymeric straw are used as input material.	sugars like corn stover and
	Abengoa's ABNT biorefinery proce major constituents, hydrolyzes the ethanol fermentation.	ss fractionates biomass into carbohydrates to sugars for
	In bench-scale R&D biorefinery teo feasibility testing and optimised pro operation unit is scaled up to a com The construction of a 70 metric t/o completion at Abengoa's research 4,000 t/a bio-ethanol plant in S construction.	chnologies are completed for presses. In the next step the imercial demonstration plant. In biorefinery pilot plant is in facility in York, NE, U.S A calamanca, Spain, is under
	In the area of biomass gasificat synthesises the gasified product gasoline or the product gas is dimethylether (DME) or other alcoho optimising the alcohol synthesis is u	ation to biofuels, Abengoa gas to either FT diesel or synthesised into methanol, ols. A demonstration plant for nder construction.

Company Name	BASF	
Contact Details	67056 Ludwigshafen Germany phone: +49 621 60-0 fax : +49 621 60-92693 e-mail: <u>presse.kontakt@basf.com</u> web: <u>www.basf.de</u>	D • BASF The Chemical Company
Core Competences	BASF is technology leader in catalyst development and production in various applications with about 800 employees in this field. It produces catalysts for cruel oil preparation, production of polymers and synthetics and thereby investigates in optimised catalyst technology for the production of Fischer Tropsch fuels. This aims at the successful development of Fischer Tropsch synthesis, which can be an alternative to the existing cracker technology.	
	With BASF's special organic salts, can be easily extracted from hydro cellulose can thereby be broken up monomer sugar components applic bio-ethanol production.	the "Ionic Liquids", cellulose ogen compounds. The solved by enzymes. This makes the cable for fermentative use in
	Further BASF provides rare earth / nickel oxide based catalysts methanation (conversion of carbon oxides to methanol). [5]	

Company Name	CHOREN Industries GmbH		
Contact Details	Frauensteiner Strasse 59 09599 Freiberg Germany	CHOREN	
	phone: +49 (0)3731 26 62-0 fax: +49 (0)3731 26 62-25 e-mail: <u>info@choren.com</u> web: <u>www.choren.com</u>		
Core Competences	The core technology of Choren's biomass to energy division is the Carbo-V process, which converts biomass into electrical power, heat or synthetic automotive fuel, SunDiesel [®] . The Carbo-V Process is a three-stage gasification process with the following sub-processes:		
	 low temperature gasification, high temperature gasification and endothermic entrained bed gasification. During the first stage of the process, the biomass (with a water content of 15 – 20 %) is continually carbonized through partial oxidation (low temperature pyrolysis) with air or oxygen at temperatures between 400 and 500 °C, i.e. it is broken down into a gas containing tar (volatile parts) and solid carbon (char). In the 2 nd process stage the gas containing tar is post-oxidized using air and/or oxygen in a combustion chamber operating above melting point of the fuel's ash to get a hot gasification medium. During the third stage of the process, the char is ground down into pulverized fuel and is blown into the hot gasification medium. The pulverized fuel and the gasification medium react endothermically in the gasification reactor and are converted into a raw synthesis gas. Once the product gas has been treated, it can be used as a		
	combustible gas for generating elect synthesis gas for producing SunDies FT diesel is planned to start in 201 output of 270 mio I/a biosynthetic fu	tricity, steam and heat or as a sel. The industrial production of 2 and is expected to have an sel.	
Figure	Choren Beta Plant in Fre	iberg (Germany)[6]	

Company Name	Haldor-Topsøe AS		
Contact Data	P.O. Box 213 Nymøllevej 55 2800 Lyngby Denmark		
	phone: + 45-45 27 20 00 fax: + 45-45 27 29 99 e-mail: <u>topsoe@topsoe.dk</u> web: <u>www.haldortopsoe.com</u>		
	HALDOR TOPSOE, INC. (USA)		
	17629 El Camino Real Houston, Texas 77058		
	phone: +1-281-228-5000 fax: +1-281-228-5109		
Core Competences	Halor-Topsøe is an internationally operating company with core competences in catalysts.		
	In frame with Topsøe's ammonia processes it provides methanation features, which convert any traces of carbondioxide and unconverted carbonmonoxide (CO) up to few ppm from the shift section into methane (CH ₄) for SNG production.		
	To counter problems of carbon monoxide and carbondioxide leakage, Topsoe has developed a methanation catalyst, PK-7R, which operates at inlet temperatures down to 190°C/375°F while ensuring that CO and CO2 are fully converted at inlet temperatures down to 190°C/375°F.		
	The superior activity and stability of the PK-7R catalyst enables operating at low temperatures which provides the client with long cycle length and significant energy savings.With its ring shape, the PK-7R catalyst achieves a 50% reduction in pressure drop relative to the conventional spherical or cylindrical shaped methanation catalysts.		
	Furthermore, Haldor-Topsøe protechnology, i.e. for a number of p East with capacities up to 800,000 r	ovides DME catalysts and lants in in Asia and the Middle mio t/a.	
	Topsøe's highly active, prereduced in nickel type catalyst based on an all to operate at inlet temperature performance which has been pro- introduction in 1994.	methanation catalyst PK-7R is a umina carrier. It was developed es down to 190°C/375°F, a oven in the industry since its	

Company Name Contact Data	Inbicon (subsidiary of DONG Energy) Kraftværksvej 53 7000 Fredericia Denmark phone: +45 76 22 20 00 e-mail: info@Inbicon.com	Inbi 🌮
	miper@dongenergy.com web: www.inbicon.com www.dongenergy.com	
Core Competences	 The core technology of Intermethanical, hydrothermal, and releases the building blocks hemicellulose, and lignin) and Inbicon reaches high pre-treatmethigh alcohol concentrations in batch has a lot less water and a yield and efficiency. After hydrothermal pre-treatmetwo biomass fractions: The fiber fraction, which 10 % hemicelluloses, we and fermented with yeas The liquid fraction conta and inhibitors. In Inbic currently built up in Kalu used as molasses feed commercial maturity. organisms in liquid fermented. With Inbicon 's IBUS process ligging grasses, bagasse, and housef generation bio-ethanol. The province of the moment in the moment. 	bicon is a three-stage process: enzymatic treatment of biomass. It of the plant material (cellulose, converts them to useful purposes. nent yields of sugar, which results in cellulosic ethanol processing. Each lot more ethanol, further increasing ent, Inbicon further proceeds with consists of 50-60 % cellulose and 2- hich can be enzymatically liquefied t. ins high levels of C5 sugars, salts, con's first biorefinery demo plant ndborg (Denmark), this fraction was d for livestock, which comes to Other possibilities to use C5 nentation are being investigated at no-celluloses like straw, corn stover, hold waste are converted to 2nd cess has been fully demonstrated at 20 kg/h and 1 t/h ligno-cellulosic thanol output at Inbicon's R&D unit nark.

Together with the research partner Forschungszentrum Karlsruhe (see below) Lurgi operates the pilot plant bioliq for the production of BtL fuels. The first stage is implemented, in which ligno- cellulosic biomass is converted into an intermediate transportable liquid product with high energy density (bioliqSynCrude) by high- speed pyrolysis in a double snake mixing reactor.		
tic ice ire		
ed sis		
be		
BtL plant bioliq, Karlsruhe (Germany) [7]		
Company Name	Repotec Renewable Power Technologies Umwelttechnik	repotec
---------------------	--	---
Contact Details	GmbH	renewable power technologies
	7540 Güssing Austria	
	phone: +43 (0)3322 9010 863 0	
	fax: +43 (0)1 2161895 15 e-mail: repotec@aon at	
	web: <u>www.repotec.at</u>	
Core Competences	Repotec operates in the field of power plants and plant engineering & construction with focus on	
	 Biomass-steam-gasification Wood gas fuel cell Fuel synthesis from biomass (BTL) Natural gas synthesis from Biomass (Bio-SNG) Biomass pressure gasification 	
	Aim of the FT pilot plant is to convert the product gas of the Biomass gasification plant with a Fischer-Tropsch (FT) process to liquid fuels, especially to diesel. A FT-PDU (process development unit) is operated, which converts about 7 Nm ³ /h PG at 25bar in a Slurry reactor to FT-products. For gas cleaning first a RME-scrubber is used to dry the gas. After compression, chlorine is separated with a sodium aluminate fixed bed. Organic sulphur components are hydrated with a HDS-catalyst and the H ₂ S is chemically separated with Zinc oxide. Both is realised in fixed bed reactors. As catalyst in the slurry reactor, iron and cobalt based catalyst are used. The obtained diesel from the Cobalt catalyst has cetan-numbers of about 80 and is free of sulphur and aromatics.	
	and with scientific support of Paul Sc	herrer Institute in Switzerland.
References	Gas Engine SNG-lab scale production SNG-lab scale production FT Wood gasification plant in or Initial operati Input: 7 N Output: 4 t/a; 0	Biomass gasification - liquid fuels Güssing (Austria) [8] on: 2005 m3/h 0.0005 t/h

Company Name	Süd-Chemie AG		
Contact Details	Lenbachplatz 6 80333 München Germany		
	phone: +49-89-5110-322 fax: +49-89-5110-444 e-mail: <u>Ralf.Weishaupt@sud-</u> <u>chemie.com</u> web: <u>www.sud-chemie.com</u>		
Core Competence	Süd-Chemie is a worldwide operating chemical company with a strong focus in catalysts and adsorbents for oil refining. Beside the catalyst required in the crude oil processing, starting from 2006 the company produces in Doha / Qatar Gas-to-Liquid (GtL) catalysts. These catalysts are used in the diesel production from natural gas.		
	In 2008 Südchemie AG and Linde Ad ligno-cellulosic ethanol plant researce builds on the competences for be catalysts, biotechnology and plant cellulosic material like wheat and m are used.	2008 Südchemie AG and Linde AG joined forces to focus on the no-cellulosic ethanol plant research and marketing. This activity lds on the competences for both partners in the fields of alysts, biotechnology and plant construction. Therefore ligno- lulosic material like wheat and maize straw, grasses and wood a used.	
	Thus the cooperation of Südchemie the planning and build-up of ligno-ce	and Linde AG offers worldwide ellulosic ethanol plants. [9]	

3.2 Other technology providers for 2nd generation biofuel plants

Company Name Contact Details	Genencor (Danisco A/S) Langebrogade 1 1001 Copenhagen Denmark	GENENCOR® A Danisco Division
	e-mail: <u>customer_relations@genencor.com</u> <u>info@danisco.com</u> web: <u>www.genencor.com</u>	
Core Competences	Genencor is a worldwide leading biotechnology company, which develops innovative enzymes and other bio-products. Genencor develops low-cost cellulases and other enzymes for the production of ethanol from biomass - unused crop and other plant	
	 With the launch of Accellerase 1500 in March 2009, Genencor has expanded and enhanced its Accellerase product line. Accellerase 1500 is a new lower-cost, more effective product available in bulk for pilot, demo, and commercial-scale cellulosic ethanol use. Acellerase® accessory products for process developers Accellerase® XY, XC, and BG are accessory enzyme products for small-scale process development. Through the enzymes´ high-performance, feedstock flexible technologies we are fast-tracking cellulosic ethanol to commercialization. 	
	Accellerase® XY and XC enzymes a whole cellulases, such as Acceller enzyme can be used to suppler improved beta-glucosidase activit outcomes.	are designed for blending with ase® 1500. Accellerase® BG ment enzyme complexes for ty for improved hydrolysis
	The products are commercially av performance, flexibility and versatilit	vailable and increase process by in a variety of applications.
References	In October 2008, DuPont Danisco ground on its first demo-scale biore collaboration with the University Foundation and Genera Energy, LLC. Genencor is supplying enzymes ethanol pilot plant in Denmark.	Cellulosic Ethanol LLC broke efinery and research facility, in of Tennessee (UT) Research to DONG Energy's cellulosic
	Genencor is working with POET, the U.S., on its cellulosic ethanol techno	largest ethanol producer in the logy.

Company Name	NESTE Oil Oyj	
Contact Details	Keilaranta P.O. Box 95 00095 NESTE OIL Finland	NESTE OIL
	phone: +358 50 458 4885 fax: +358 10 458 4442 e-mail: osmo.kammonen@nesteoil.com web: www.nesteoil.com	
Core Competence	Neste Oil has developed a renewable diesel component NExBTL (Next Generation Biomass to Liquid) utilizing a proprietary conversion process for vegetable oils and animal fats. It is produced by direct catalytic hydrogenation of plant oil into the corresponding alkane.	
	NExBTL Renewable Diesel is a hydrocarbon and offers better product characteristics and engine performance than first- generation biodiesels. NExBTL Renewable diesel properties are similar to the best existing diesels such as GTL. NExBTL is sulfur-, oxygen-, nitrogen- and aromatic free and has very high cetane number. Product meets the requirements set by EN590.	
	Cold properties (cloud point) of NExBTL can be adjusted in the production from -5 to -30 °C to meet the needs of various climatic conditions. Heating value is similar to the EN590 hydrocarbon fuel, storage stability is good and water solubility low. NExBTL diesel is compatible with existing vehicle fleet as well as diesel fuel logistic system and is technically easy to blend in conventional diesels.	
	are under construction in Finland and Singapore.	
References	NExBtL production unit in Porvoo (Finland) [10]	
	Input material: Vegetable oil, animal fats Initial operation: 2007 Output: 170,000 t/a Technology: Vegetable oil refining	

Company Name Contact Details	Novozymes A/S (World headquarter) Krogshoejvej 36 2880 Bagsvaerd Denmark	
	phone: +45 44 46 00 00 fax: +45 44 46 99 99 web: <u>www.novozymes.com</u>	Retnink Iomorrow
Core Competences	 Novozymes produces a wide range of enzymes that optimize the conversion of grains such as corn, barley, wheat and rye into fuel ethanol. Thereby higher ethanol yields, faster throughput and lower overall processing costs can be achieved. Novozymes develops state-of-the-art enzyme solutions that convert cellulose into simple sugars, which in turn can be fermented into fuel ethanol. The approved enzymes by Novozymes are used for Liquefaction by alpha-amylase for use in breaking down gelatinized starch into dextrins Saccharification of liquefied starch by broken down dextrins to glucose Viscosity reduction by use of enzymes that can degrade the cereal-specific components that cause the high viscosity and thereby flexible raw material use, quality choice, increased production capacity etc. 	

3.4 Biogas through fermentation of wet biomass

3.4.1 Biogas plant manufacturers with upgrading to natural gas quality

Contact DetailsHatenweg 15 48155 Münster Germanyagri.capit	al	
phone: 0251-27601-100 fax: 0251-27601-900 e-mail: <u>info@agri-capital.de</u> web: <u>www.agri-capital.de</u>		
Core CompetencesThe standardised product of Agri Capital are 500 kWel plants with inputs of 9,000 t raw material and about 5,0 slurry.	biogas)00 m³	
A new business area is the refining of biogas to biom (natural gas) for feed in into the natural gas grid. In 20 initial operation of such biomethane refinery has been real Könnern near Halle as the biggest biomethane conditioning p Germany. There 6 Mio m ³ /a of biomethane should be pr and fed into the network of the Mitteldeutsche Gasvers GmbH (MITGAS) for supply of about 350,000 households Halle-Leipzig region. Four further plants of this type are alre the planning stage.	A new business area is the refining of biogas to biomethane (natural gas) for feed in into the natural gas grid. In 2008 the initial operation of such biomethane refinery has been realised in Könnern near Halle as the biggest biomethane conditioning plant in Germany. There 6 Mio m ³ /a of biomethane should be produced and fed into the network of the Mitteldeutsche Gasversorgung GmbH (MITGAS) for supply of about 350,000 households in the Halle-Leipzig region. Four further plants of this type are already in the planning stage.	
ReferenceBiomethane Refinery in Könnern (Germany) with upgr technology by Malmberg [11]Biogas Conditioning	Biomethane Refinery in Könnern (Germany) with upgrading technology by Malmberg [11] Biogas Conditioning	
Conditioning: through pressure swing adsorption by compa Malmberg Input: Raw biogas with nominal load of 8.65 mio Nm ³ /a (47)	Conditioning: through pressure swing adsorption by company Malmberg Input: Raw biogas with nominal load of 8.65 mio Nm ³ /a (47,6 Mio	
Max. throughput capacity: 10,4 Mio. Nm ³ /a (57,2 mio kW Output biomethane: 5,73 Mio. Nm ³ /a Methane losses: < 1 %, gross calorific value: ca. 10,75 kWh/Nm ³	Max. throughput capacity: 10,4 Mio. Nm ³ /a (57,2 mio kWh/a) Output biomethane: 5,73 Mio. Nm ³ /a Methane losses: < 1 %, gross calorific value: ca. 10,75 kWh/Nm ³	
Biomethane Feed-in		
Distance to natural gas grid: 200 m Pressure Stage: PN 16		
Type of gas: Natural gas H		
Type of gas: Natural gas H Increase of gross calorific value: Addition of liquefied gas	S	

Company Name	BD AgroRenewables GmbH & Co. KG	••
Contact Details	Auf der Lage 2 49377 Vechta-Calveslage Germany phone: +49 (0) 4447-801-4300 fax: +49 (0) 4447-801-237 e-mail: info@bd-agro.de web: www.bd-agro.de	•BD AGRO RENEWABLES
Core Competences	The plant type MegaFerm is implemented together with the associated company Krieg & Fischer Ingenieure GmbH. It usually has capacities from 500 kWel to 1.5 MWel and is suitable for feed- in into natural and micro gas grids. MegaTerm plants have a very good self-insulation, which allows their implementation in regions with extremely high or low surrounding temperatures.	
Reference	MegaFerm Biogas plant, Hage (Germany) Input: maize silage, grass silage, WCS, cattle manure Output: heat for municipal use, feed-in into natural gas grid Initial operation: 2008 / 2009	

Company Name	BioConstruct GmbH	
Contact Details	Head quarter Niedersachsen Wellingstr. 54 49328 Melle Germany	BIOGASANLAGEN MIT VERSTAND
	phone: +49 5226 / 5932 - 0 fax: +49 5226 / 5932 - 11 web: <u>www.bioconstruct.de</u>	
Core Competences	The core competence of Bioconstruct is the construction of turnkey biogas plants, development of biogas projects and the operation of biogas plants. Besides conventional use of biogas in CHP plants, Bioconstruct also installs systems for biogas refining to biomethane.	
References	Biogas and Biomethane plant Neukammer 2, Nauen (Germany)	
	Input: 85,600 t/a manure, maize silage, rye	
	Initial operation: III. Quarter 2009 (under construction)	
	Output: 6.27 mio kWh _{el} , 9.05 mio kWh _{therm} ; 8.43 mio m ³ methane (905,000 I fuel oil equiv.)	
	Technology: Wet fermentation process, 3 gas processors à 600	n in single-stage flow-through m ³ /h biogas
	Biogas and Biomethane plant Friedersdorf, Heidesee (Germany)	
	Input: Grass silage, rye, cattle	manure, maize silage
	Initial operation: I. quarter 20	09 (under construction)
	Output: 1.52 mio kWh _{el} ; 1.52 k ^v in natural gas quality	W _{therm} ; 1.69 mio m ³ biomethane
	Technology: Wet fermentation; 400 m ³ /h biogas	1 gas processor à

Company Name	Carbotech Engineering GmbH	
Contact Details	Am Technologiepark 1 45307 Essen Germany	
	phone: +49 (201) 1 72 - 19 15 fax: +49 (201) 1 72 - 13 82 e-mail: <u>mail@carbotech.info</u> web: <u>www.carbotech.info</u>	CARBOTECH
Core Competences	Carbotech has it's origin in mining research and works for over 40 years in the area of development, engineering and construction of plants for gas generation and upgrading. Today, Carbotech is part of the Schmack group and therefore offers overall solutions in energy conversation.	
	The generation of bio-methane from biogas by Carbotech works through a pressure swing adsorption technology (PSA). Contrary to washing and membrane processes beside carbon dioxide also water, siloxane, hydrogen sulphide etc. are removed. The bio-natural gas flow is 5 to 3,000 Nm ³ /h; the bio-natural gas quality reaches > 96 % methane according to DVGW-, ÖVGW-, SVGW-guidelines as well as ISO 15403.	
Reference	Biogas Upgrading Plant, Fredriks	stad Biogass AS (Norway)
	Capacity: 150 Nm³/h	

Contact DetailsTullgårdsgatan 8 116 68 Stockholm Sweden e-mail: info@greenlanebiogas.comImage: Contact DetailsCore CompetencesGreenlane is part of the world-wide operating Flotech group. Greenlane biogas upgrading systems are proprietary-designed solutions that deliver 97+% pure methane for use as vehicle fuel, or for supplementing pipeline gas. The Greenlane system uses a Ro-Flo vane type compressor to supply a packed column scrubber with raw gas, which removes unwanted components. This is followed by a (patented) adsorber process, providing pure and bone dry gas as end product. Greenlane upgrading technology has been implemented in one of the first upgrading plants in Marquette/ Lille (France) in 1995. It has provided the technology for the largest methane production plant in the world in Güstrow (Germany) with a processing capacity of 10,000 nm³/h.ReferenceBiogas Upgrading Plant Marquette/ Lille (France) Client: Municipality of Lille/ SOLAGRO Initial operation: 1995 Output: 100 m³/h biogas; 80 Nm³ vehicle fuel with calorific value of 10,7 kWh/Nm³ (H2 content > 97 %; CO2 content 1,6 %) Technology: Water scrubbing	Company Name	Greenlane Biogas	
e-mail: info@greenlanebiogas.com web: www.greenlanebiogas.comCore CompetencesGreenlane is part of the world-wide operating Flotech group. Greenlane biogas upgrading systems are proprietary-designed solutions that deliver 97+% pure methane for use as vehicle fuel, or for supplementing pipeline gas. The Greenlane system uses a Ro-Flo vane type compressor to supply a packed column scrubber with raw gas, which removes unwanted components. This is followed by a (patented) adsorber process, providing pure and bone dry gas as end product. Greenlane upgrading technology has been implemented in one of the first upgrading plants in Marquette/ Lille (France) in 1995. It has provided the technology for the largest methane production plant in the world in Güstrow (Germany) with a processing capacity of 10,000 nm³/h.ReferenceBiogas Upgrading Plant Marquette/ Lille (France) Client: Municipality of Lille/ SOLAGRO Initial operation: 1995 Output: 100 m³/h biogas; 80 Nm³ vehicle fuel with calorific value of 10,7 kWh/Nm³ (H₂ content > 97 %; CO₂ content 1,6 %) Technology: Water scrubbing	Contact Details	Tullgårdsgatan 8 116 68 Stockholm Sweden	Greenane
Core CompetencesGreenlane is part of the world-wide operating Flotech group. Greenlane biogas upgrading systems are proprietary-designed solutions that deliver 97+% pure methane for use as vehicle fuel, or for supplementing pipeline gas. The Greenlane system uses a Ro-Flo vane type compressor to supply a packed column scrubber with raw gas, which removes unwanted components. This is 		e-mail: <u>info@greenlanebiogas.com</u> web: <u>www.greenlanebiogas.com</u>	
CompetencesGreenlane biogas upgrading systems are proprietary-designed solutions that deliver 97+% pure methane for use as vehicle fuel, or for supplementing pipeline gas. The Greenlane system uses a Ro-Flo vane type compressor to supply a packed column scrubber 	Core	Greenlane is part of the world-wide of	operating Flotech group.
ReferenceBiogas Upgrading Plant Marquette/ Lille (France)Client: Municipality of Lille/ SOLAGROInitial operation: 1995Output: 100 m³/h biogas; 80 Nm³ vehicle fuel with calorific value of 10,7 kWh/Nm³ (H2 content > 97 %; CO2 content 1,6 %) Technology: Water scrubbing	Competences	Greenlane biogas upgrading systems are proprietary-designed solutions that deliver 97+% pure methane for use as vehicle fuel, or for supplementing pipeline gas. The Greenlane system uses a Ro-Flo vane type compressor to supply a packed column scrubber with raw gas, which removes unwanted components. This is followed by a (patented) adsorber process, providing pure and bone dry gas as end product. Greenlane upgrading technology has been implemented in one of the first upgrading plants in Marquette/ Lille (France) in 1995. It has provided the technology for the largest methane production plant in the world in Güstrow (Germany) with a processing capacity of 10,000 nm ³ /h.	
Client: Municipality of Lille/ SOLAGRO Initial operation: 1995 Output: 100 m ³ /h biogas; 80 Nm ³ vehicle fuel with calorific value of 10,7 kWh/Nm ³ (H ₂ content > 97 %; CO ₂ content 1,6 %) Technology: Water scrubbing	Reference	Biogas Upgrading Plant Marquette/ Lille (France)	
Initial operation: 1995 Output: 100 m ³ /h biogas; 80 Nm ³ vehicle fuel with calorific value of 10,7 kWh/Nm ³ (H ₂ content > 97 %; CO ₂ content 1,6 %) Technology: Water scrubbing		Client: Municipality of Lille/ SOLAGRO	
Output: 100 m ³ /h biogas; 80 Nm ³ vehicle fuel with calorific value of 10,7 kWh/Nm ³ (H ₂ content > 97 %; CO ₂ content 1,6 %) Technology: Water scrubbing		Initial operation: 1995	
Technology: Water scrubbing		Output: 100 m ³ /h biogas; 80 Ni value of 10,7 kWh/Nm ³ (H ₂ content	m ³ vehicle fuel with calorific t > 97 %; CO ₂ content 1,6 %)
		Technology: Water scrubbing	

Company Name	Haase Energietechnik GmbH	
Contact Details	Gadelander Straße 172 24531 Neumünster Germany	
	phone: +49 4321 878-0 fax: +49 4321 878-29 e-mail: <u>info@haase-energietechnik.de</u> web: <u>www.haase-energietechnik.de</u>	
Core Competences	HAASE Energietechnik is expert in environmental technology and plant construction with focus on biogas technology, mechanical- biological waste treatment, disposal process technology and energy technology.	
	The BiogasUpgrader technology by HAASE upgrades biogas to biomethane. The technology works with an organic cleaning dilution. The procedure increases the methane percentage inside the gas to 90-98 Vol% (adjustable values) and eliminates at the same time sulphur and water vapour. This is used for feed-in into the municipal natural gas grid and for use as vehicle fuel. Four upgrading plants has already been realised in Germany.	
References	Biogas Upgrading plant in Ronnenberg (Germany)	
	Clients: 5 regional farmer cooperatives, municipal energy supplier Hannover	
	Initial operation: 2008	
	Output: 650m ³ /h of biomethane (feed-in capacity of 28 mio kWh/a) fed-in into natural gas grid	
	Technology: Organic physical scrubbing	
	Biogas Upgrader plant in Jameln (Germany)	
	Client: Raiffeisen-Genossenschaft Jameln	
	Initial operation: 2006	
	Output: 650m ³ /h (2,4 mio m ³ /a) biomethane for vehicle fuel	
	Technology: Organic physical washing by absorption	

Company	Kompogas AG	
Contact Details	Flughofstrasse 54 8152 Glattbrugg Switzerland	KOMPOGAS
	phone: +41 44 809 77 77 fax: +41 44 809 77 00 e-mail : <u>info@kompogas.ch</u> web: <u>www.kompogas.ch</u>	
Core Competences	Kompogas offers biogas plant systems along the whole biogas value added chain with specialisation on green waste fermentation. Besides the standard product portfolio Kompogas offers biogas upgrading facilities for refining up to natural gas quality. The upgrading process involves removing CO ₂ , sulphur and water from the biogas to raise the proportion of methane it contains. Once the treated biogas has been compressed to 250 bar, it can be used as Kompogas, a vehicle fuel equivalent to natural gas. Kompogas has been used as a fuel for years in Switzerland, for instance in a mixture of Kompogas and natural gas marketed by Erdgas Zurich AG.	
References	Biogas and Upgrading Plant Input: 12,000 t/a biowaste Initial operation: 2007 Output: 105 to 130 m ³ biogas petrol) Technology: 2 concrete constr Biogas and Refinery plant Er Client: Municipality Jona, contra Input: 5,000 t/a municipal orga Initial operation: 2005 Output: 505,000 Nm ³ /a biogas fed-in gas volume: 302,000 Nm Technology: Concrete ferment of Erdgas Zürich	Utzenstorf (Switzerland) per ton raw material (70 – 90 I uction fermenter ngelhölzi/ Jona (Switzerland) actor : R.O.M. AG anic biowaste yield ~ 105 Nm ³ /t Input; ³ /a er; fuel feed-in into natural gas grid

Company Name	Malmberg Water AB	
Contact Details	296 85 Åhus Sweden	M
	phone: +46(0)44-231800, fax: +46(0)44-231880 mail: <u>info@malmberg.se</u> web: <u>www.malmberg.se</u>	MALMBERG
Core Competences	 Malmberg has a long tradition in environmental solutions and respective plant construction. It operates in four business areas: Water treatment Biogas Heating/Cooling Drilling Environmental services For more than 15 years, Malmberg works on the upgrading of biogas to vehicle fuel or for the natural gas grid. Malmberg Compact[™] is a prefabricated plant for upgrading, assembled directly in a specially manufactured, insulated, ventilated sheet steel building. It uses the scrubber technology with water circulation. In line with the Compact series Malmberg filling stations are delivered in prefabricated buildings or are integrated into the gas 	
References	Biogas Upgrading and Fuel Station, Stockholm (Sweden) [12] Client: Stockholm Vatten Initial operation: 2001 Input: 1x 400 m³/h raw biogas, 1x 600 m³/h raw biogas Output: 6 mio Nm³/a gas Technology: Water scrubber More references see Ökobit (plant in Darmstadt) and Schmack (plant in Könnern)	

Company Name	ÖKOBiT GmbH	ÖVODIT
Contact Details	Jean-Monnet-Straße 12 D-54343 Föhren Germany	IHR BIOGASEXPERTE
	phone: +49-(0) 65 02 /93859-0 fax: +49-(0) 65 02 /93859-29 e-mail: <u>info(at)oekobit.com</u> web: <u>www.oekobit.com</u>	
Core Competences	Besides plant engineering and construction of biogas plants, Ökobit offers biogas upgrading through pressurised swing adsorption for feed-in into natural gas grids.	
Reference	Biogas Refinery Plant Darmstac Client: HEAG Südhessische Energie Input: 2,600 t/a pig manure, 10,80 silage, rye Initial operation: 2008 Output: 2.5 mio m ³ biogas; 300 N Technology: Pressure swing adso gas in quality H	It (Germany) e AG (HSE) D0 t/a whole crop and maize Im ³ /h crude gas orption by Malmberg; natural

Company Name	Schmack Biogas AG	
Contact Details	Bayernwerk 8 D-92421 Schwandorf Germany	Schmack Control Biogas AG
	phone: +49 (0) 94 31/ 751 - 0 fax: +49 (0) 94 31/ 751 - 204 e-Mail: <u>info@schmack-biogas.com</u> web: <u>www.schmack-biogas.com</u>	
Core Competences	Since 1995 Schmack Biogas works on the planning and construction of biogas plants and has its own accredited biotechnology laboratory for biogas and environmental analyses. Schmack offers plant solutions for upgrading of biogas to natural gas quality through pressure swing adsorption. Together with the biogas upgrading expert CarboTech Engineering GmbH it has realised the first biomethane plant in Germany, in Pliening near Munich.	
Reference	Biogas upgrading plant Mühlack	ker (Germany)
	Client: Municipal energy supplier Mühlacker Input: 37,000 t/a maize, cereals, grass Initial operation: 2007 Output: 2 MW _{el} ; 5 MW _{therm} ; 500 Nm ³ /h biomethane; upgrading capacity: 4,4 Mio Nm ³ /a biomethane in natural gas quality; feed-in of ca. 48 mio kWh in natural gas grid Technology: Biogas upgrading by CarboTech GmbH	

3.4.2 Biogas plant manufacturers providing standard turnkey biogas plants

Company	AAT - Abwasser- und Abfalltechnik GmbH
Contact Details	Konrad-Doppelmayr-Str. 17 6960 Wolfurt Austria
	phone : +43/5574/65190-0 fax : +43/5574/65185-6 e-mail: <u>office@aat-biogas.at</u> web: <u>www.aat-biogas.at</u>
Core Competences	 AAT offers plant design, process engineering and equipment supply for sorting and anaerobic treatment of organic residue and highly polluted organic waste water including biogas handling and utilization. AAT core business is pre-treatment and anaerobic digestion of solid and wet biomass. AAT offers the following digester systems are offered: Hydraulically mixed digester Energy crops digester Prefabricated digester Compact digester Key components offered are fermenter agitators, safety devices, gas holders, biogas handling equipment, desulphurization plants, flares and
Poforoncos	off-gas biofilters.
Kelerences	Organic waste disposal plant Roding (Germany) Client: ERC Energie Recycling Landkreis Cham Input: bio-waste, kitchen residues, float from fat flotation units Initial operation: 1996 Ouput: 400 kW _{el} Technology: hydraulic mixing with special design for sediment withdrawal, 650 m ³ digester volume
	Municipal plant ARA Meiningen (Austria)
	Client: ARA Meiningen Input: sewage sludge Initial operation: 2001 Output: 630 kW _{el} CHP Technology: Sewage sludge digestion 4,000 m ³

Company Name Contact Details	Biogest Energie- un Wassertechnik Gmb Büropark Donau Inkustraße 1–7/5/2 3400 Klosterneuburg Austria phone: + 43 2243 20840 e-mail: office@bioges web: www.biogest.at	d 9 H 840 10 E 9 40 t.at	вю	GEST®
Core Competences	 Single processing fermenter (SPF) for easily degradable substrates (maize silage, sunflower silage or slurry). This single-stage process optimises fermenter volume and volumetric loading and has an outstanding price/performance ratio. Biogest PowerRing Technology for unrestricted biodegradable material use minimised heat losses through thermally-insulated fermenter cover up to 99 % of design full load elapsed hours mesophilic light load fermenter for stable and effective biological degradation process 			
References	Project/ Location	Country	Dimension	Initial operation
	Szeged	Hungary	1,000 kW	2008
	Desov	Czech Republic	500 kW	2008
	Bekko – Odessa	Ukraine	1,000 kW	2008
	GAV Krems I	Austria	125 kW	2005

Company	Enbasys Biotechnological Energy Plants	
Contact Details	Parkring 18 8074 Grambach/ Graz Austria	[®] enbasys
	phone: +43 (0) 316 4009- 5600 fax: +43 (0) 316 4009-5605 e-mail: <u>office@enbasys.com</u> web: <u>www.enbasys.com</u> <u>www.vtu.com</u>	
Core Competences	Enbasys is a subsidiary of the internationally active VTU Holding. Its core competence is anaerobic digestion technology, but also the know-how in plant engineering combining qualifications in various industry segments, such as substrate management, waste water treatment with low chemical input, biodiesel production, power generation and biotechnology.	
	Enbasys´ innovative system "I biogas	High Load Hybrid Reactor" produces
	from various substrate production or organic re	es, like side products of biofuel sidues with high COD content
	with large volume-streat oxygen demand/m ³ ferr	nms (loading rate of 15 kg chemical menter volume)
	with high performance (e.g. exhaust vapours concentration	digesters (UASB) for waste water s, rinsing water) of low organic
Reference	North Italy I Biogas plant	
	Input: 350,000 t/a organic m phase: 120,000 t/a Initial operation: 2007 Output: 3 MW _{el} CHP Technology: 2 x 2,900 m ³ di oxygen demand/m ³ ⋅d	unicipal and food industry waste; liquid gester; loading rate: 11,6 kg chemical

	· · · · · · · · · · · · · · · · · · ·	
Company Contact	Thöni Industriebetriebe GmbH	
Details	Division of Environmental and Energy Engineering Obermarktstraße 48 6410 Telfs Austria	fhöni .
	phone: +43 5262 6903-502 fax: +43 5262 6903-510 e-mail: <u>umwelt@thoeni.com</u> web: <u>www.thoeni.com</u>	
Core Competences	Since 1990, Thöni has been involved in developing innovative technologies and modern systems engineering for treating waste and generating biogas from organic waste and raw materials.	
	The fermentation plants are jointly Kompogas. Besides classical fermenta process for biowaste (co-fermentation) portfolio.	designed with the partner ation the wet conditioning is part of Thöni´s standard
References	Thöni in licensed partnership with Kompogas Biogas Power Plant Flörsheim-Wicker/ Frankfurt (Germany)	
	Client: Rhein-Main Deponie GmbH Input: 45,000 t/a of source-segregated biowaste Initial operation: Spring 2008 Technology: EMSR Technology / Fermenter	
	Thöni in licensed partnership with Kom Biogas Power Plant PASSAU/HELLE	pogas ERSBERG (Germany)
	Client: AWG DONAU-WALD MBH Input: 39,000 t/a of source-segregate Initial operation: November 2004 Output: 2 x 836 kW _{el} Technology: 3 Thöni - Kompoga fermentation residues/ screw presses	d biowaste 1s – Fermenter; Conditioning

3.5 Selection of research institutes in the field of 2nd generation biofuels

Institutes Name Contact Data	Aston University Bio-Energy Research Group Chemical Engineering & Applied Chemistry	Aston University
	Aston Triangle Birmingham, B4 7ET United Kingdom	
	phone: +44 121 204 3381 fax: +44 121 204 3680 e-mail: <u>a.v.bridgwater@aston.ac.uk</u> web: <u>www.aston-berg.co.uk</u>	Bioenergy Research Group
Core Competences	 BERG - the BioEnergy Research Group at Aston University is one of the largest university based research groups in thermal biomass conversion in the world. BERG focuses its efforts on thermal processing and particularly fast pyrolysis for production of liquids that can be used as fuels for power and/or heat production; for production of transport fuels; or as a source of chemicals. The research fields consist of: Thermal processing Pyrolysis for production of liquid (bio-oil), gas and charcoal Gasification for production of gas for use as fuel, for production of hydrogen, or for synthesis of transport fuels and chemical Combustion for production of heat that can be used for heat and/or power production Biological processing Fermentation to alcohol, including bio-ethanol and biobutanol that is used as a transport fuel or is added to gasoline 	
	methane and carbon di and/or power Mechanical processing Production of vegetable diesel (RME - rape met diesel	oxide - that can be used for heat oils that can be upgraded to bio- thylester), which can be added to

Institutes Name Contact Data	Bioenergy 2020+ GmbH Inffeldgasse 21b 8010 Graz Austria phone: +43 316 873-9201 fax: +43 316 873-9202	bio <mark>energy</mark> 2020+
	e-mail: <u>centre@bioenergy2020.eu</u>	
	web: www.bioenergy2020.eu	
Core Competences	Biomass gasification and fermer biofuels for transport are key res (BE2020). The area of thermal gasification i	tation (biogas) as well as liquid search fields of Bioenergy 2020+ is dealing with i.e.:
	gasification, slagging gas for advanced CHP (com cells).	bined cycles: engine/ORC, fuel
	 Research and developme production of heat, power SNG, BtL) for vehicles a grid. Utilization of the production 	nt of polygeneration plants with er, and synthetic biofuels (Bio- and/or feed-in into natural gas
	applications (e.g. steel inc	dustry).
	 Studies and fundamental biomass for chemicals. 	research on raw materials from
	In the area of fermentation (following research topics:	(biogas) BE2020 works on i.e.
	Industrial high rate development capable of ("energy crops") and sul by-products.	digestion process technology using diversified raw materials bstrate mixtures from industrial
	Improvement of the separation of NH ₃ , H ₂ S an	biogas quality, through pre- d CO ₂ .
	 Alternative use of biogas reforming of CH₄). 	(i.e. upgrading to fuel quality,
	Beside this BE2020 provides en field of 1 st generation biofuels as various technological and econom	gineering services mainly in the s well as consultancy services for nical biomass related projects.

Institutes Name Contact Data	Cutec Clausthaler Umwelttechnik Institut GmbH	
	Leibnizstraße 21+23 38678 Clausthal-Zellerfeld Germany	TEC
	phone: +49 5323 933-0 fax: +49 5323 933-100 e-mail: <u>cutec@cutec.de</u> web: <u>www.cutec.de</u>	
Core Competences	Cutec works in the resear optimisation of biofuels and che With the 0,4 MW _{th} BtL demon 2005, which is operated in su MAN DWE reactors, a technolog production of FT biodiesel. The atmospheric circulating fluidise the FT synthesis. For FT synth reactor is applied. First BtL pro- demonstration plant. [13] Furthermore, Cutec works of synthesis technologies.	The fields of development and emical raw materials. Instration plant Artfuel launched in upport of the automobile industry gy will be developed for the central plant consists of gasification in an d bed with oxygen and steam and nesis a low temperature fixed bed oducts have been produced in the n the optimisation of methanol

Institutes Name Contact Data	Energy Research Centre of the Netherlands P.O. Box 1 1755 ZG Petten Netherlands phone: +31 224 56 4949 fax: +31-224-568487	Energy research Centre of the Netherlands
	e-mail: <u>vanderdrift@ecn.nl</u> <u>reith@ecn.nl</u> web: <u>www.ecn.nl</u>	
Core Competences	The current status of ECN develo that a lab-scale system from k consisting of a 5 kg/h MILENA in various dry cleaning reactor contaminants such as sulphur an olefins, and catalytic methanat facility is used to support the materials. Furthermore, a 160 realized in May 2008. It is connect removal. Further gas cleaning a 2008/2009, based on lab-scale re	ppment of Bio-SNG technologies is biomass to raw SNG is available direct gasifier, OLGA tar removal, is for the removal of other ad chlorine, catalytic conversion of ion reactors. This lab-scale test he selection of conditions and kg/h MILENA gasifier has been ected to gas cooler and OLGA tar and methanation will be added in esults.

Institutes Name Contact Data	Forschungszentrum Karlsruhe Karlsruhe Institute of Technology (KIT)	Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft
	Hermann-von-Helmholtz-Platz 1 76344 Eggenstein- Leopoldshafen Germany	
	phone: +49 724782-0 fax: +49 7247 82-5070 e-mail: <u>kfz@umwelt.fzk.de</u> web: <u>www.fzk.de</u>	
Core Competences	web: www.fzk.de The research area Renewable Energies of KIT is active in R&D for biomass use as chemical energy source in kind of gaseous or liquid biofuels. For the conversion of ligno-cellulosic biomass KIT operates the bioliq®-pilot plant, in which the input material is converted into a tough liquid (slurry) with 10-15 times higher energy density, known as bioliqSyncrude®. In a second step BioSyncrude is further converted into synthesis gas and methanol through a high temperature gasification process. For the generation of biofuels methanol passes through another synthesis step. The plant scale for commercial application of this technology is enhanced step by step. Currently the phase for synthetic gas generation is realised and the stage for the production of biofuels has now be launched. Therefore the synthesis via Fischer Tropsch process and the synthesis via methanation with central conversion of methanol to BtL fuels is planned	

Institutes Name Contact Data	German Biomass Research Centre gGmbH (DBFZ)	
	Torgauer Str. 116 04347 Leipzig Germany	DBFZ
	phone: +49 (0)341 2434-112 fax: +49 (0)341 2434-133 e-mail: <u>info@dbfz.de</u> web: <u>www.dbfz.de</u>	
Core	DBFZ is a non-profit company owned by the Federal Republic of	
Competences	Germany.	
	The core activity of DBFZ is practical and industry driven research	
	and development in technical, ecological and economic issues of	
	energetic use of solid, liquid and gaseous biofuels.	
	The activities are carried out in the	e following departments:
	Bioenergy Systems	
	Biogas technology	
	Biofuels	
	Thermo-chemical process e	engineering
	 Biomass combustion 	
	International affaires	

Institutes Name	Joanneum Research	
Contact Data	Institute of Energy Research Elisabethstrasse 5 8010 Graz Austria phone: +43 316 876 1336 fax: +43 316 876 1320	JOANNEUM
	e-mail: <u>max.lauer@joanneum.at</u> web: <u>www.joanneum.at/en/fb1/ief.html</u>	
Core Competences	The Institute of Energy Research works on the improvement of current and the development of new technologies. With solutions for efficient and environmentally friendly energy planning the institute provides support to companies, local authorities and regions that have opted for responsible energy policy - not least in response to changing legislation. It participates in numerous national and international boards and platforms.	
	 Renewable Energy Technologies Development of combustion a biomass-based generation of process heat and space heating 	and control technologies for combined heat and power, ng
	Development of cooling syste	ms using RE sources
	 Biological gasification of biom and power generation 	ass in biogas plants for heat
	Energy Systems and Strategies	
	 Information platform for "hyc future" 	lrogen" and "fuels of the
	 Knowledge database supporti energy and environment sect 	ng technology transfer in the or
	 Energetic analysis and optimi processes 	sation of industrial production
	Assessment of future transpo and environmental engineerir	rt systems from an energy ng perspective
	Energy, Land Use and Climate Chang	ge
	 Assessment of environmental on life cycle analyses includin Method development and con and project mechanisms of th 	impacts of energy use based g carbon sources and sinks sulting in emissions trading ne Kyoto Protocol

Institutes Name	Lund University	
Contact Data	Department of Chemical Engineering Center for Chemistry and Chemical Engineering P.O. Box 124 221 00 Lund Sweden	LUND UNIVERSITY
	fax: +46 46 222 45 26 e-mail: <u>guido.zacchi@kat.lth.se</u> web: <u>www.chemeng.lth.se</u>	
Core Competences	The main part of the research within the department falls within the areas of environmental and energy engineering, and product and process development. A great research challenge for the department is to create energy- efficient processes. This comprises:	
	 catalysis energy saving in separation processes, e.g drying and membrane processes industrial energy conservation in the process industry development of gasification processes development of biomass-based motor fuels 	
	Besides, the department works in production systems for product renewable raw materials, chemica as industrial biotechnological appli	in the fields of development of ts and alternative fuels from Il products and processes as well ications.

Institutes Name Contact Data	Paul Scherrer InstituteThermalProcessEngineering Group (TPE)5232 VillingenSwitzerland	PAUL SCHEEREE INSTITUT
	phone: +41 56 310 29 32 fax: +41 56 310 21 99 e-mail: <u>serge.biollaz@psi.ch</u> web: <u>http://tpe.web.psi.ch</u>	
Core Competences	Since 2002 TPE has been focussing its activities on the conversion of abundant or waste biomass (woody and dry herbaceous biomass) via conventional gasification process either into 2 nd generation bio-fuels (synthetic natural gas SNG) or electricity via high temperature fuel cells and gas turbines. System integration of gasification, gas processing and the final conversion process is one key for a successful implementation of such technologies in the market. New technologies have to compete with established biomass-based technologies. Techno- economic requirements for new technologies are therefore well known and dictate in which directions technology development has to go.	
	 while of ress independent of the conversion route, the following unit operations are important: Removal of particles and heavy metals Treatment and/or removal of hydrocarbons, especially tars Treatment and/or removal of sulphur species 	
Figure	Biomass — Gasification — F	Fuel synthesis Synthetic natural gas (SNG) Producer gas processing Electricity generation Combined cycle (B-IGCC) High temp. fuel cells (B-IGFC) Gas engine Eresearch fields

Institutes Name Contact Data	Technical University Bergakademie Freiberg Institute of Energy Process Engineering and Chemical Engineering	W TECHNISCHE
	Reiche Zeche Fuchsmühlenweg 9 IEC-Haus 1 Freiberg Germany	PEIBER
	phone: +49 39-4533 fax: +49 39-4555 e-mail: <u>thomas.kuchling@iec.tu-</u> <u>freiberg.de</u> web: <u>http://tu-</u> <u>freiberg.de/fakult4/iec/forschungsgebiet</u> <u>e.en.html?int_fav=en</u>	
Core Competences	The Institute is currently building up a pilot plant with a 10 MWth single-stage pressurised circulating bed gasifier with Power High Temperature Winkler technology (PHTW) as well as methanol synthesis with 15 kg/t input via central conversion of methanol to BtL fuels. As input 2,4 t/h straw and energy wood is used.	

Institutes Name Contact Data	University College Cork Department of Civil & Environmental Engineering Sustainable Energy Research Group Ireland	Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland
	phone: +353 21 4902286 fax: +353 21 4276648 e-mail: jerry.murphy@ucc.ie web: http://www.ucc.ie/en/civileng/Contact/	
Core Competences	The principle research areas of the Sust Group are sustainable energy systems an energy trends analysis, sustainable ener energy prediction and resource analysis, fuel cells. The expertise within the Group is recognin SERG staff have been called on to provide of energy and environmental policy i Ministerial Renewable Energy Strategy Change Inventory Data Users Group and the Grid Upgrade Development Programm External Strategic advice to Sustainable provided in establishing its Renewable E and is currently being provided in the est Policy Statistical Support Unit.	ainable Energy Research alysis, energy modelling, gy policy research, wind hydrogen production and sed at national level and le key input to a number nitiatives, including the Group, National Climate d the Steering Group on ne. ble Energy Ireland was nergy Information Office tablishment of its Energy

Institutes Name Contact Data	University of Copenhagen Forest & Landscape Denmark Hørsholm Kongevej 11 2970 Hørsholm Denmark phone: +45 3533 1704 fax: +45 3029 8468	FOREST & LANDSCAPE
	e-mail: hnj@life.ku.dk web: www.ucc.ie/en/civileng/Contact /	
Core Competences	Forest & Landscape Denmark is an independent centre at the University of Copenhagen (UC) and undertakes research, education, extension and consultancy services in the area of forest, landscape and planning. It researches into the production and use of wood for fuel, both for heating, production of electricity and as a liquid biomass.	
	Furthermore it works on the whole spectre of "the wood chain", from planting the most useful tree species for timber and other purposes, to their treatment for obtaining the correct quality, and in this way ensuring the future supply of strong wood for construction, beautiful wood for floors and furniture, light wood fibres for paper and fuel for energy and other uses.	

Institutes Name Contact Data	University Hambu von Thünen Insti Wood Chemistry Leuschnerstrasse 9 21031 Hamburg-Be Germany phone: +49 40 739 fax: +49 40 739 6 e-mail: <u>d.meier@ha</u> hamburg.de web: www.holzwirtschaft ?main=internationa	arg-Harburg tutes (vTI) for 1 ergedorf 9 62 517 2 502 blz.uni- org/content.php al&nav=index n/institutes/htb/	Zentrum Hofzwirtschaft
Core Competences	The vTI works on increased ecc engineering, particularly for reduct residues and increase of energetic ar Therefore novel, environmentally frie with focus on optimisation of the pap including thermo-chemical and biotec catalysts and alternative utilisations for The following research fields are cover		b-efficiency for chemical wood tion of harmful emissions and and material exploitation of wood. endly technologies are developed er and chemical fibres production chnological processes like use of or renewable sources. red by the institutes:
	Centre for Wood	ourg Sciences	Johann Heinrich von Thunen Institutes
	Department for Forest and Wood	Global Forest Management	Institute for Global Forest Management
	Management	Economy	Institute for Forest and Wood Economics
		Work sciences	
	Department for Wood	Chemical Wood Engineering	Institute for Wood Technology and Wood Biology
	rechnology	Mechanical Wood Engineering	
	Department for W	ood Biology	

Institutes Name Contact Data	Vienna University of Technology Institute of Chemical Engineering Getreidemarkt 9/159 1060 Wien Austria phone: +43 1 58801 15970 fax: +43 1 58801 10001 e-mail: hhofba@mail.zserv.tuwien.ac.at web: http://www.yt.tuwien.ac.at/	
Core Competences	 The Technical University of Vienna Repotec and the European Renewab the FT pilot plant in Güssing and as plant. The following achievements car Biomass CHP Güssing is now f reaches availabilities over 90 % 2nd biomass CHP based of gasification is under commission At lab scale a successful 1,0 done to prove the concept Research on Fischer Tropsch results are very promising Concept for polygeneration has also small scale 2nd generation input) on the market Efficiencies of 2nd generation over 60 % and for FT liquids up For polygeneration an overall e be reached (biofuel, electricity 	with technical support of ole Energy Centre operates s well builds up a Bio-SNG of be outlined: for 6 years in operation and 6 on dual fluidised steam oning 00 hours test was already diesel is ongoing and first as been developed to bring on biofuels (~ 50 MW fuel fuel are high (for Bio-SNG o to 50 %) efficiency of about 80 % can and district heat)
Figure	Wood Gas A sh Gas Liquid Solid Solid Gas Materials Cleaning Finergy. Gas Water Gas Solid Gas Materials Co.2 + H.2S / Heavy HC Schematic example for the Bio-SI in Güssing [1]	Fluegas Fluegas Fluegas Power Gas Engine Power SNG Purification Bio-SNO Fuel NG fuel production plant 14]

Institutes Name Contact Data	VTT Technical Research Centre of Finland P.O. Box 1000 FI-02044 VTT Finland phone: +358 20 722 5517 fax: +358 20 722 7001 e-mail: esa.kurkela@vtt.fi dongniklas.weymarn@vtt.fi web: www.vtt.fi	
Core Competences	VTT develops novel fuel conversion methods for production of liquid biofuels for boiler, engine and turbine use. VTT particularly focuses on the development of fast pyrolysis in laboratory and bench-scale facilities and in close cooperation with industry. In the area of transportation fuels VTT's expertise covers both thermochemical and biotechnical processing of ligno-cellulosic materials and process optimisation.	
	 In particular, VTT covers the following research topics: Pyrolysis Process assessments of thermochemical conversion (e.g. IEA-TEA project) Production of transportation fuels Use of liquid biofuels in engines and vehicles 	

3.6 References for Figures

- [1] Hofbauer, Hermann (2005): Gasification A component to realise polygeneration plants. Symposium Polygeneration. Güssing.
- [2] Hartmann, H./ Kaltschmitt, M. (2001): Energie aus Biomasse Grundlagen, Techniken und Verfahren (Energy from Biomass – Fundamentals, Technologies and Processes). Springer Verlag. Berlin, Heidelberg, New York.
- [3] Pschorn, Thomas (2009): Press releases lingo-cellulosic ethanol devices from Andritz. (15.05.2009)
- [4] SEKAB (2009): Press photos. http://www.sekab.com/default.asp?id=2203&refid=2205&l3=1962 (10.05.2009)
- [5] Chemiereport (2008): BASF optimiert Fischer-Tropsch-Synthese: Neuer Katalysator soll Olefine aus Syngas ermöglichen (BASF optimises FT Synthesis: New Catalyst should produce olefines from syngas). Chemiereport 7/08. p. 16-18.
- [6] Choren Industries GmbH (2004), Press release. <u>http://www.choren.com/de/choren_industries/informationen_presse/media_downl_oads/</u> (28.04.2009)
- [7] Hoffmann, Joachim (2007): bioliq® Stroh im Tank! (bioliq straw in the tank!).
 Press release on 21.06.2007 by Forschungszentrum Karlsruhe in der Helmholtz-Gesellschaft. <u>http://idw-online.de/pages/de/news215124</u> (20.04.2009)
- [8] Ökonews (2004): Güssing, die energieautarke Stadt. Press Article on 21.04.2004. <u>http://www.oekonews.at/index.php?mdoc_id=1006327</u> (20.04.2009)
- [9] Linde AG/ Süd-Chemie (2008): Süd-Chemie und Linde entwickeln gemeinsam Anlagen zur Herstellung von Biokraftstoffen der zweiten Generation (Süd-Chemie and Linde jointly develop a plant fort he production of 2nd generation biofuels). Press release on 06.05.2008. München.
- [10] Neste Oil, Media: NExBTL plant. <u>http://brandbank.nesteoil.com/servlet/Piccolo?action=doshow&page=wwwBank/i</u> <u>mage.html&rec=1587621&arc=850&pageID=4041852</u> (08.05.2009)
- [11] Thien, Leonhard (2008): Bioerdgasanlage Könnern. AgriCapital AG. Presentation at common event Bernburg-Stenzfeld on 04.08.2008.

- [12] Österreichischer Biomasseverband (Austrian Biomass Association, 2005): Biogas als Treibstoff (Biogas as Transport Fuel). Biogastreibstoff-Aufbereitungsanlagen und Bioethanolanlagen in Schweden. Wien.
- [13] Carlowitz, Otto (2006): Biofuels: Research at Cutec. Presentation at 4. Clausthaler Dialogue "2nd Generation Biofuels. Ready for the market?" 15.06.2006. Clausthal-Zellerfeld.
- [14] Rauch, Reinhard (2008): 2nd generation biofuels via dual fluidised bed steam gasification of biomass. Presentation at Exhibition in the framework of the Informal Meeting of Environment Ministers, 11th – 13th April 2008. Brdo.

Bioenergy 2020+ GmbH

 Außenstelle Wieselburg

 Rottenhauserstr.
 1
 T ++43(0)7416 522 38-10

 2350 Wieselburg
 F ++43(0)7416 522 38-99
Firmensitz Graz Inffeldgasse 21 b 8010 Graz www.abc-energy.at centre@abc-energy.at