ESSAIS DE 3 ANS DE BIOSTIMULANTS DANS LA FRAISE D'ÉTÉ

Présenté par Mylène Marchand-Roy

Christine Landry, Marchand-Roy, M., Mainguy J., Paradis, M. et Giroux, D.

6 décembre 2018 – Les Journées horticoles de Saint-Rémi

MISE EN CONTEXTE

2013: Observation du dépérissement des fraisières en rangs nattés au Québec

2014: Abolition du programme de révision des grilles de fertilisation

Hypothèses soulevées : virus ou facteurs de sol;

sites très virosés avec bons rendements, vs. sites peu ou pas infectés non productifs

- Le puceron ailé est le vecteur principal de virus du fraisier
- Des stress abiotiques, tel que le gel hivernal et le manque d'eau, ou des maladies racinaires (pourriture noire ou phytophtora) pourraient faire partie du problème.

MISE EN CONTEXTE

Les amendements et engrais organiques (AEO) sont des sources de MO reconnues pour favoriser la fertilité du sol, sa structure (aération, rétention en eau, moins d'érosion) et la résistance aux maladies.

En situation de dépérissement, il pourrait donc s'avérer intéressant de remplacer une partie des engrais minéraux par des AEOs dans le plan de fertilisation, en plus des efforts mis sur le dépistage et le contrôle des virus.

Des biostimulants sont également de plus en plus proposés aux producteurs pour bonifier la santé de leur sol et la vigueur des plants.

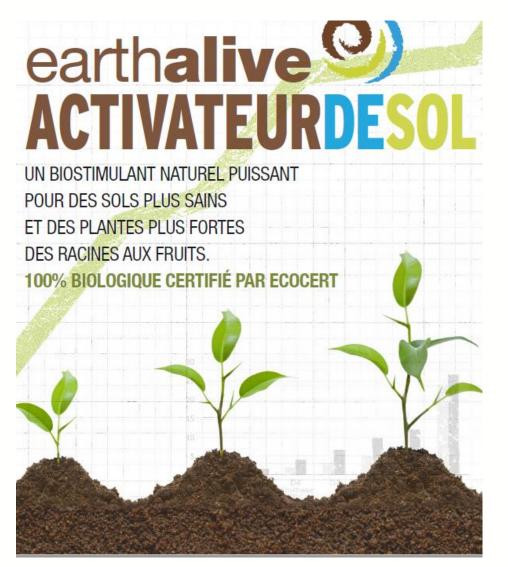
Dans ce contexte, est-il pertinent de combiner l'emploi d'AEOs avec des biostimulants?

OBJECTIFS

Vérifier l'impact d'apports d'AEOs et de biostimulants sur

- 1) le développement des plants,
- 2) Les symptômes de dépérissement et la transmission de virus aux plants sains implantés près d'un champ virosé,
- 3) l'activité biologique du sol, sa fertilité
- 4) le rendement en fruits et
- 5) les revenus et les coûts (marge de production).

SITE


Ferme Marivil – Beaumont région de Bellechasse Problématique de dépérissement depuis 8 ans 2015 à 2017 Sol loam sablo-argileux

Chaque traitement est répété 3 fois dans des parcelles de 7 x 7 m (5 rangs) Densité de plantation : 17 000 plants/ha (cv. Jewel)

BIOSTIMULANTS TESTÉS

ÉLÉMENTS-CLÉS (Naturellement présents dans l'Activateur de sol Earth Alive)	(%) POIDS SEC
Azote total (N)	4,08
Acide phosphorique assimilable (P ₂ O ₅)	0,25
Potasse soluble (K ₂ O)	0,26
Soufre (S)	6,39
Calcium (Ca)	0,14
Magnésium (Mg)	0,06
Fer (Fe)	0,05
Matières organiques totales	76,9
MICROORGANISMES GARANTIS	CONCENTRATION MINIMUM
Bacillus subtilis	2,48 x 10 ⁸ cfu/g
Bacillus amyloliquefaciens	5,00 x 10 ⁶ cfu/g
Pseudomonas moteilii	1,98 x 10 ⁸ cfu/g

L'Activateur de sol *Earth Alive* est un biofertilisant biologique conforme et breveté.

- Transforme l'azote atmosphérique sans avoir besoin d'engrais
- •Solubilise le phosphore, le silicate et le zinc
- Chélate le fer, le rendant plus disponible pour les plantes
- Produis des enzymes qui libèrent les éléments nutritifs de la matière organique
- Améliore la capacité de rétention d'eau du sol
- •Stimule l'absorption des nutriments par les plantes, maximise la valeur et le rendement de votre sol
- •Renforce la résistance des plantes aux conditions environnementales difficiles, aux stress et au choc de transplantation.

BIOSTIMULANTS TESTÉS

Microflora PROTM

Productions agricole et ornementale

- Rhizobactéries
 - Bacillus subtilis 1 x 109 ufc/g
 - Bacillus amyloliquefaciens 1 x 109 ufc/g
- Améliore le rendement
- Favorise la croissance
- Augmente la masse racinaire
- Améliore l'absorption des nutriments N, P, K, Fe, Ca et Mg
- Augmente la résistance au stress

ENGRAIS DE FERME TESTÉS

Engrais	MS %	MO (kg/T)	N total (kg/T)	C/N	P total (kg/T)	K total (kg/T)
Compost de fumier de bovin (CFB) (1 an)	19	440	3,8	19	1,4	0,5
Fientes de poules en granulés (FPG)	89	590	40,4	7	13,6	23

RÉGIES PLANIFIÉES 2015

Description des traitements

100% Engrais minéral conventionnel (ECV)

100% Engrais minéral conventionnel (ECV) + Earthalive

Engrais minéral + CFB 30N + Earth Alive

Engrais minéral + CFB 50N

Engrais minéral + FPG 30N + Microflora

Engrais minéral + FPG 50N

TRAITEMENT ABANDONNÉ...

Témoin engrais minéral + BEA

guide technique Earth Alive:

1- Transplantation:

Directement dans le trou de plantion : 1 c. à table (7 g)

2- Ensemencement et plantation

À la volée: 10-20 kg/ha

Attention 10X plus de produit/ha selon l'option 1

Risque de surdosage!!

RÉGIES COMPARÉES 2015

	F	Plantatio	on	Fraction	nement	
				1 ^{ier}	2 ^{ième}	Dose total
Description des traitements	27-0-0	CFB	FPG	27-	-0-0	
Description des traitements	kg	N _{efficace}	/ha	kg N	N/ha	kg N/ha
100% Engrais minéral conventionnel (ECV)*	35 	-	-	55	35	125
CFB 30N + Biostim. Earth Alive (BEA)	35	30	- - !	35	25	125
CFB 50N	35	50	- I - I	25	15	125
FPG 30N + Microflora (Micro)	35	-	30	35	25	125
FPG 50N	35	-	50	25	15	125

^{*}Dose totale de N et engrais minéral fractionné selon les recommandations du GREF (CRAAQ, 2010)

Suivant la caractérisation du sol, apports ajustés de P et K avec 0-46-0 et 0-0-60

En 2016 et 2017: fertilisation d'entretien avec 65 kg N/ha de 13-13-13

DOSES DE BIOSTIMULANT

Applications répétées annuellement;

CFB 30 N + BEA

- 1 pulvérisation en début de saison à raison de 10 kg/ha (juin 2015 et mai 2016-2017)
- Dilution 2,85 g/L

FPG 30 N + Micro

- 4 (juin à août 2015) ou 3 (mai à juin 2016-2017) pulvérisations à toutes les 3 ou 2 semaines d'intervalles
- Avec une solution de 2L/ha (dilution 1 : 500 L)

Pulvérisation 2016

Pulvérisations 2017-2018

RÉCOLTES

En 2016 et 2017;

7 récoltes/an du début à la fin juillet

Zones de mesure (2 m linéaire) des rendements préétablies (rang central);

Décompte du nombre de fruits et pesées

Tri des fraises en deux catégories, vendables et rejets (fraises trop petites, pourries, difformes ou présentant des maladies)

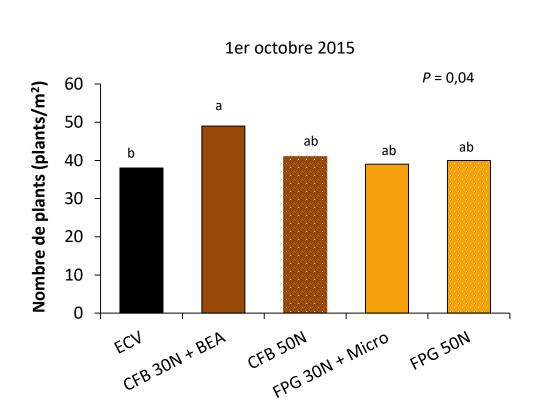
FRAISIÈRE AVEC VIRUS À 500 M (2015)

-Aucun traitement contre pucerons et aleurodes (vecteurs) pour favoriser la transmission dans les parcelles du dispositif

IMPLANTATION ET CROISSANCE

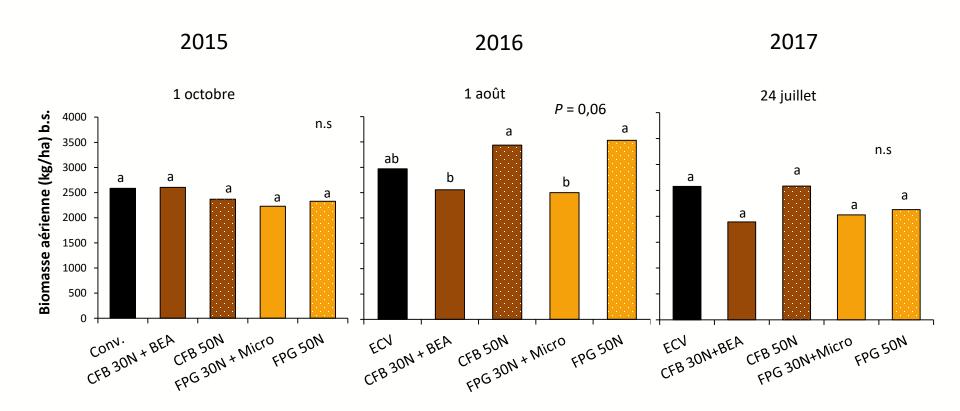
7 juillet 2015

22 juillet 2015



1 octobre 2015

FIN IMPLANTATION



REPRISE ET RÉCOLTE

Mi-juin Fin juillet Mi- mai 2016 2017

BIOMASSE ANNUELLE

OCCURRENCE DE VIRUS

2015-2016: occurrence de virus quasi nulle

2017 : occurrence plus importante mais demeurée faible dans l'ensemble

			Viru	S				
	SMOV	SMYEV	SCV	SVBV	SPAV	BPYV	plants infectés par 1 yirus	plants infectés par 2 virus
Traitements		Nb de pla	. (%)	' (%)				
ECV	2	0	0	0	0	0	13	0
CFB 30N + BEA	3	3	0	1	0	0	40	13
CFB 50N	5	0	1	0	0	0	33	0
FPG 30 N + Micro	4	2	0	0	0	0	40	0
FPG 50 N	5	0	0	0	0	0	33	0

Premiers symptômes visuel de virus observés en 2017 dans le traitement CFB 50 N seulement...

DIVERSITÉ MICROBIENNE DU SOL-2016

Laboratoire d'écologie microbienne de l'IRDA

17 juin 2016

Sols sous le plant	Bénéfiques						
	% détecté/ %	Total de Bactéries	% détecté / %1	Total eucaryotes			
Trait.	Bacillus	Pseudomonas	Arthropoda	Glomeromycota			
ECV	0,375 a	0,465 a	5,219 a	0,133 b			
CFB 30N + BEA	0,222 a	0,430 a	13,473 a	0,128 b			
CFB 50N	0,267 a	0,369 a	/1,471 a	0,180 ab			
FPG 30N + Micro	0,337 a	0,418 a	/ 0,653 a	<mark>0,298 a</mark>			
FPG 50N	0,283 a	0,448 a	6,531 a	<mark>0,268 a</mark>			

Grande variabilité dans les résultats = difficile d'observer des tendances

Les genres Bacillus et Pseudomonas ne sont pas détectés davantage avec les traitements de biostimulants

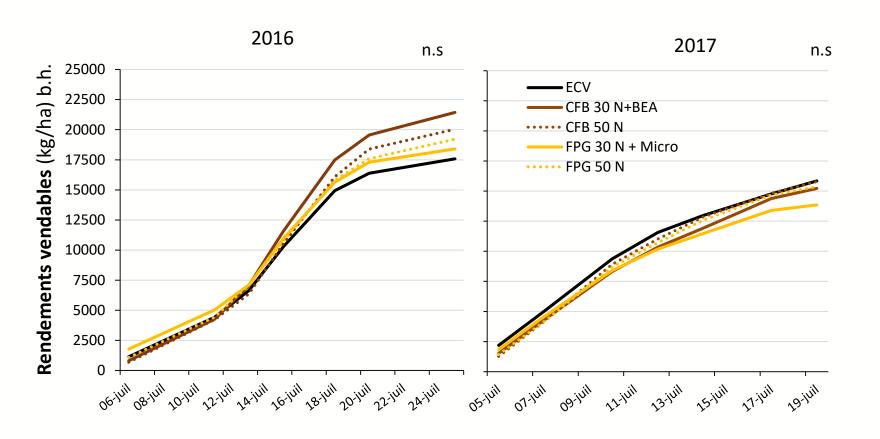
DIVERSITÉ MICROBIENNE DU SOL-2016

Laboratoire d'écologie microbienne de l'IRDA

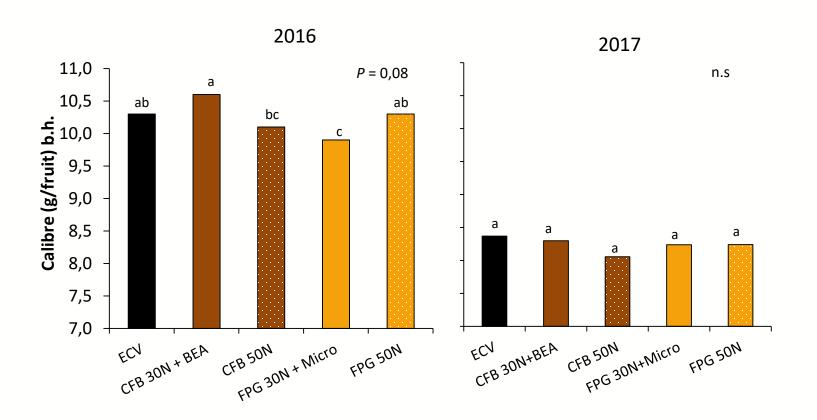
17 juin 2016

<u>Sol</u>	Pathogènes Pathogènes							
	% détecté / % Total Eucaryotes			% détecté	/ % Total Cha	mpignons		
Trait.	Nematoda	Pratylenchus	Colleto- trichum	Sclerotinia	Fusarium	Gibberella	Verticilllium	
ECV	4,450 a	0,008 a	0,127	0,026	0,149	0,072	1,689 a	
CFB 30N + BEA	5,200 a	0,000 a	0,116	0,010	0,105	0,018	0,924 a	
CFB 50N	4,856 a	0,002 a	0,136	0,005	0,084	0,025	0,950 a	
FPG 30N + Micro	2,289 a	0,000 a	0,077	0,000	0,128	0,042	0,998 a	
FPG 50N	2,715 a	0,013 a	0,050	0,016	0,167	0,052	1,246 a	

+Symptômes visuels de faibles intensités de Blanc et *Phytophtora cactorum* observés dans tous les traitements (Évaluation des dommages réalisés par l'agronome conseiller agricole)


DIVERSITÉ MICROBIENNE DU SOL-2017

15 juin 2017	Sol sous les plants								
Cible	Traitement	CFB 30N +BEA	CFB 50N	FPG 30N +Micro	FPG 50N	ECV			
Champignon	Diplodia intermedia	0,000%	0,000%	0,000%	0,000%	0,002%			
Champignon	Colletotrichum hemerocallidis	0,053%	0,032%	0,049%	0,136%	2,661%			
Champignon	Alternaria alternata	0,000%	0,001%	0,001%	0,000%	0,000%			
Champignon	Alternaria infectoria	0,003%	0,021%	0,023%	0,012%	0,002%			
Champignon	Botrytis caroliniana	0,007%	0,016%	0,010%	0,030%	0,016%			
Champignon	Coniella fragariae	1,237%	4,090%	3,304%	4,428%	4,003%			
Champignon	Cylindrocarpon sp	0,000%	0,001%	0,000%	0,000%	0,002%			
Champignon	Fusarium oxysporum	0,007%	0,004%	0,008%	0,008%	0,006%			
Champignon	Verticillium dahliae	0,003%	0,000%	0,000%	0,018%	0,000%			
	Total champignons pathogènes	1,310%	4,166%	3,396%	4,631%	6,692%			
Eucaryote	Phytophthora	0,040%	0,020%	0,003%	0,010%	0,007%			
Eucaryote	Pratylenchus	0,000%	0,000%	0,020%	0,000%	0,003%			
Eucaryote	Aphelenchoides	0,137%	0,020%	0,007%	0,010%	0,000%			
	Total eucaryotes pathogènes	0,177%	0,040%	0,030%	0,020%	0,010%			
Bactérie	Xanthomonas	0,044%	0,028%	0,011%	0,017%	0,044%			
Bactérie	Rhodococcus fascians	0,028%	0,028%	0,022%	0,044%	0,028%			
	Total bactéries pathogènes	0,072%	0,056%	0,033%	0,061%	0,072%			
Champignon	Glomeromycetes	0,019%	0,029%	0,064%	0,032%	0,029%			
Bactérie	Pseudomonas	0,556%	0,917%	0,372%	0,633%	0,461%			
Bactérie	Bacillus	0,039%	0,033%	0,100%	0,083%	0,067%			
	Total bactéries bénéfiques	0.594%	0.950%	0.472%	0.717%	0.528%			
Eucaryote	Nematoda	4,483%	3,937%	7,787%	6,963%	6,977%			

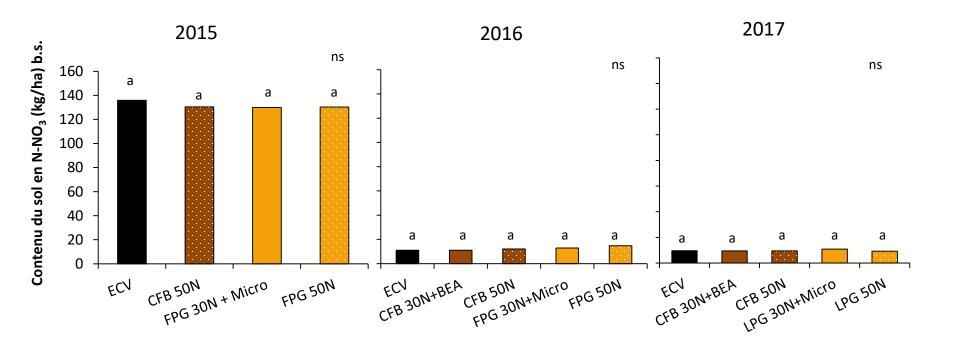


RENDEMENTS 2016-2017

CALIBRE DES FRUITS

PRÉLÈVEMENTS EN AZOTE

Prélèvements en N par les plants + fruits



CONTENU EN NO₃ RÉSIDUEL POST- RÉCOLTES

2015: apports de 125 kg N_{efficace}/ha

2016-2017: apports de 65 kg N_{efficace}/ha/an

BILAN AZOTÉ RÉGIE CONVENTIONNELLE

Quantité de N (kg/ha) b.s.	2015	2016	2017
Apportée	125	65	65
Prélevée (biomasse)	51	39	28
Exportée (fruits)	-	14	12
Bilan	+ 74	+ 12	+ 25

ANALYSE ÉCONOMIQUE

Bcp de pulvérisations recommandées. Fait monter les coûts d'utilisation

Marge sur coût variable/ha

iviaige sui cout variable/ila								
	ECV	CFB (30 N) + BEA	CFB (50 N)	FPG (30 N) + Micro	FPG (50 N)			
Machinerie (\$)								
Épandage et incorporation AEO ¹		218,25	361,35	8,00	8,00			
Pulvérisation biostimulant ¹		37,20		124,00				
Intrants (\$)		3 pulvérisations			10 pulvérisations de 2015-2017			
BEA		de 2015-2017			de 2015-2017			
MICRO				2 500				
Compost de fumier de bovin (CFB) ²		2044,80	3386,70					
Actisol				240,00	400,00			
Engrais granulaire N		-75,62	-125,94	-75,62	-125,94			
Coût additionnel au témoin (\$)		2 622	3 622	2 796	282			
Grand Total des coûts variables (\$)	32 560	35 181	36 182	35 356	32 842			
Grand Total des produits (\$)*	144 834	158 608	154 992	139 679	149 671			
Marge sur coût variables totale (\$)	112 274	123 427	118 810	104 323	116 829			

^{*}Rendement (T/ha) cumulé pendant les 2 années de récolte (2016 + 2017) X prix moyen pondéré des fraises (4,33\$/kg) (CRAAQ, 2014)

¹Budget AGDEX 740/825, CRAAQ (Août 2014a), incluant la main d'œuvre

²Budget AGDEX 537/821, CRAAQ (2016)

CONCLUSIONS

Amendements et engrais organique;

- -CFB et FPG peuvent remplacer jusqu'à 40 % du N sous forme ECV sans nuire au développement des plants, à leur prélèvement en N ou à la production de fruits.
- -Les régies avec CFB ou FPG ont toutes donné des rendements vendables (T/ha) supérieurs, de 5 à 22 % en 2016 vs. régie ECV quoique les différences n'étaient pas significatives statistiquement.
- -En 2016, une augmentation significative de champignons mycorhiziens du sol a été détectée avec les FPG

CONCLUSIONS

Biostimulants;

- -Toutes les régies d'AEOs avec/sans biostimulants semblaient réduire l'occurrence de champignons pathogènes du sol
- -Tendance vers une réduction générale de champignons pathogènes du sol avec CFB + BEA.
- -Coûts d'implantation plus élevés avec les AEOs et biostimulants

Mais après 3 ans, toutes les régies AEOs augmentent la marge sur les coûts variables; sauf FPG + Micro

CONCLUSIONS

- -Des quantités très élevées de nitrate résiduel ($^{\sim}$ 130 kg N-NO $_{\rm 3}$ /ha) ont été retrouvées à la fin de la 1 $^{\rm ère}$ saison étant donné l'apport recommandé supérieur aux prélèvements, soit 125 kg N/ha
- -Une fertilisation révisée permettrait d'économiser sur les coûts d'engrais et l'impact environnemental associé au lessivage du nitrate en automne.
- -La fertilisation du sol peut modifier l'efficacité observée des biostimulants; les biostimulants seraient souvent plus efficaces lors d'une nutrition sous-optimale (Papenfus, et coll., 2013; Calvo, et coll., 2014).
- -Dans cette essai la fertilisation a été optimale et la pression de maladie (dépérissement) faible;

Ainsi les régies ont eu peu d'effets significatifs sur les paramètres de rendements, croissance ou résistance aux maladies.

REMERCIEMENTS

OMAPAQ

Christian Lacroix et Liette Lambert

• Producteur

- Donald Mercier et Solange Larochelle (Ferme Marivil inc.)
- Ferme Marielle Boulet et Patrice Gonthier

- Laboratoire d'écologie microbienne (LEM)
 - o Richard Hogue et Thomas Jeanne
- Technicien et étudiants d'été

Olndustrie

- Earth Alive Clean Technologies
- Abnatura
- o Acti-Sol

