Florence Pomerleau-Lacasse ${ }^{1}$, Philippe Seguin ${ }^{1}$, Gaëtan Tremblay², and Danielle Mongrain ${ }^{2}$

${ }^{1}$ McGill University; 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC, H9X 3V9
${ }^{2}$ AAC, Quebec research and development center; 2560 Hochelaga Boulevard, Quebec, QC, G1V 2J3

Developmental stages of timothy and alfalfa
© Her Majesty the Queen in Right of Canada, represented by the Minister of Agriculture and Agri-Food, (2017)
Electronic version available at www.agr.gc.ca
Catalogue No. A72-135/2017E-PDF
ISBN - 978-0-660-07657-7
AAFC No. 12606E

Paru également en français sous le titre Stades de développement de la fléole des prés et de la luzerne
For more information, reach us at www.agr.gc.ca or call us toll-free 1-855-773-0241.

Table of contents

Foreword 3
Timothy developmental stages 4

1. Vegetative 5
2. Stem elongation 8
3. Reproductive 11
Alfalfa developmental stages 14
4. Vegetative 15
5. Flower bud development 16
6. Flowering 17
7. Seed production 18
Calculating the mean developmental stage of a sample of timothy or alfalfa 20
Mean Stage by Count (MSC) 20
Mean Stage by Weight (MSW) 21
Acknowledgement 22

Foreword

The developmental stage at which forage crops are harvested greatly affects their yield, nutritive value, and persistence. Throughout their growth, plants use energy from the sun, carbon dioxide from the air and water to synthesize carbohydrates via photosynthesis. The carbohydrates produced allow plants to grow, increasing their yield. Throughout the last weeks of each growth cycle as well as during the fall, perennial forage plants store nutrients, which allow them to regrow after each cut and in the spring. Harvesting forage plants at a more advanced developmental stage thus promotes the yield and persistence of perennial forage crops. Moreover, the developmental stage at harvest is a key factor in determining the nutritive value of the resulting forage. As a plant becomes older, the fiber content increases, the cell walls lignify, and the leaf to stem ratio decreases. These changes reduce the crude protein concentration as well as the digestibility of the dry matter and fibers of the forage, which becomes less palatable, less consumed and less efficiently used by ruminants.

It is therefore important to accurately evaluate the developmental stage of forage crops in order to precisely establish the appropriate harvest time and to optimize their yield, nutritive value and persistence. This guide illustrates and explains the developmental stages of timothy and alfalfa, the two main forage species cultivated in Quebec. It also describes two methods used to determine the mean stage of such forage: the Mean Stage by Count (MSC) and the Mean Stage by Weight (MSW).

Effects of the developmental stage of plants on their yield and nutritive value.

Adapted from Blaser, R., R.C. Hammes, Jr., J.P. Fontenot, H.T. Bryant, C.E. Polan, D.D. Wolf, F.S. McClaugherty, R.G. Klein, and J.S. Moore. 1986. Forage-animal management systems. Virginia Polytechnic Institute, Bulletin 86-7.

Timothy developmental stages

	Stage		Characteristics
	Name	Index	
Vegetative (foliar development)	V0 (VE)	1.0	Emergence of the first leaf
	V1	1.1	First leaf with collar
	V2	1.3	Second leaf with collar
	V3	1.5	Third leaf with collar
	V4	1.7	Fourth leaf with collar
	V5	1.9	Fifth leaf with collar
Stem elongation	E0	2.0	Elongation between collars
	E1	2.1	First palpable/visible node
	E2	2.3	Second palpable/visible node
	E3	2.5	Third palpable/visible node
	E4	2.7	Fourth palpable/visible node
	E5	2.9	Fifth palpable/visible node
Reproductive (inflorescence development)	R0	3.0	Swelling at the apex
	R1	3.1	Inflorescence partially visible
	R2	3.3	Inflorescence entirely emerged
	R3	3.5	Peduncle entirely emerged
	R4	3.7	Emergence of anthers
	R5	3.9	Fertilization

[^0] Agronomy Journal 83: 1073-1077.

1. Vegetative

VE or V0 (index 1.0)

- Emergence of the first leaf
- No leaf with collar

No leaf with collar

- First leaf with collar

V2 (index 1.3)

- Second leaf with collar
- No elongation between collars

V3 (index 1.5)

- Third leaf with collar
- No elongation between collars

V4 (index 1.7)

- Fourth leaf with collar
- No elongation between collars

V5 (index 1.9)

- Fifth leaf with collar
- No elongation between collars

2. Stem elongation

E0 (index 2.0)

- Beginning of the elongation between collars
- Variable number of collars

E1 (index 2.1)

- First palpable or visible node

E2 (index 2.3)

- Second palpable or visible node

E3 (index 2.5)

- Third palpable or visible node
- No swelling at the apex

E4 (index 2.7)

- Fourth palpable or visible node
- No swelling at the apex

E5 (index 2.9)

- Fifth palpable or visible node
- No swelling at the apex

3. Reproductive

R0 (index 3.0)

- Swelling at the apex
- Inflorescence not visible

R1 (index 3.1)

R2 (index 3.3)

- Inflorescence entirely emerged
- Peduncle not visible

R3 (index 3.5)

R4 (index 3.7)

- Anthesis
- Emergence of the anthers

R5 (index 3.9)

Alfalfa developmental stages

	Stage		Characteristics
Vegetative	Early vegetative	0	Stem $\leq 15 \mathrm{~cm}$
	Mid vegetative	1	$15 \mathrm{~cm}<$ stem $\leq 30 \mathrm{~cm}$
	Late vegetative	2	Stem $>30 \mathrm{~cm}$
Flower bud development	Early bud	3	$1-2$ nodes with buds
	Late bud	4	≥ 3 nodes with buds
	Early flower	5	$1-2$ nodes with open flowers
	Late flower	6	≥ 3 nodes with open flowers
Seed production	Early seed pods	7	$1-3$ nodes with green seed pods
	Late seed pods	8	≥ 4 nodes with green seed pods
	Ripe seed pods	9	Brown seed pods

Alfalfa developmental stages: Adapted from Fick, G.W. and Mueller, S.C. 1989. Alfalfa quality, maturity, and mean stage of development. Department of Agronomy, College of Agricultural and Life Sciences. Cornell University, Information Bulletin 217.

1. Vegetative

Early vegetative (index 0)

- Stem $\leq 15 \mathrm{~cm}$
- No bud

Mid vegetative (index 1)

- 15 cm < stem $\leq 30 \mathrm{~cm}$
- No bud

Late vegetative (index 2)

- Stem > 30 cm
- No bud

Early bud (index 3)

Late bud (index 4)

- At least 1 visible or palpable bud at ≥ 2 nodes
- No open flower

Early flower (index 5)

- 1 node with at least 1 open flower
- No seed pod

Late flower (index 6)

- ≥ 2 nodes with at least 1 open flower
- No seed pods

Early seed pod (index 7)

Late seed pod (index 8)

- 4 nodes with at least 1 green seed pod

Ripe seed pod (index 9)

Calculating the mean developmental stage of a sample of timothy or alfalfa

Based on the morphological characteristics previously described (Timothy: Moore et al., 1991; Alfalfa : Fick and Mueller, 1989), we can determine the mean developmental stage of a forage plot based on a sample of 3 or 4 handfuls of entire plants cut at the soil surface, thus of about 40 alfalfa stems or 30 timothy stems.

Mean Stage by Count (MSC)

1. Separate and count the stems belonging to each developmental stage, thus to each index from 0 to 9 in the case of alfalfa and from 1.0 to 3.9 in the case of timothy (see previous tables).
2. Calculate the Mean Stage by Count of the sample, being the average of the individual stages present in the sample weighted for the proportional number of stems belonging to each stage. We recommend rounding the result to two decimals after the point.

Ex. For a sample of 40 stems of alfalfa having 4 stems in stage 0,5 stems in stage 1,5 stems in stage 2,9 stems in stage 3,15 stems in stage 4 , and 2 stems in stage 5:

$$
\operatorname{MSC}=\left(\frac{4}{40} \times 0\right)+\left(\frac{5}{40} \times 1\right)+\left(\frac{5}{40} \times 2\right)+\left(\frac{9}{40} \times 3\right)+\left(\frac{15}{40} \times 4\right)+\left(\frac{2}{40} \times 5\right)=2.80
$$

Ex. For a sample of 30 timothy stems having 2 stems in stage 1.1, 4 stems in stage $1.3,6$ stems in stage $1.5,2$ stems in stage $1.7,12$ stems in stage 2.0, and 4 stems in stage 2.1:

$$
\mathrm{MSC}=\left(\frac{2}{30} \times 1.1\right)+\left(\frac{4}{30} \times 1.3\right)+\left(\frac{6}{30} \times 1.5\right)+\left(\frac{2}{30} \times 1.7\right)+\left(\frac{12}{30} \times 2.0\right)+\left(\frac{4}{30} \times 2.1\right)=1.67
$$

Mean Stage by Weight (MSW)

1. Separate the stems belonging to each developmental stage, thus to each index from 0 to 9 in the case of alfalfa and from 1.0 to 3.9 in the case of timothy (see previous tables).
2. Dry the stems at about $55-65^{\circ} \mathrm{C}$ for at least 48 h , until they reach a constant weight, then record the weight of each sample (weight of the bag and its content minus the weight of the bag when empty).
3. Calculate the sample Mean Stage by Weight, being the average of the individual stages present in the sample weighed for the proportional weight of stems belonging to each stage.

The MSW is calculated the same way as the MSC, except that the dry weight of stems, instead of the number, in each stage is multiplied by the stage index. We recommend rounding the result to two decimals after the point.

Ex. For an alfalfa sample having 4 stems in stage 0 weighing $0.3 \mathrm{~g}, 5$ stems in stage 1 weighing $0.7 \mathrm{~g}, 5$ stems in stage 2 weighing $1.9 \mathrm{~g}, 9$ stems in stage 3 weighting $7.0 \mathrm{~g}, 15$ stems in stage 4 weighing 36.1 g , and 2 stems in stage five weighing 6.2 g :
$M S W=\left(\frac{0.3}{52.2} \times 0\right)+\left(\frac{0.7}{52.2} \times 1\right)+\left(\frac{1.9}{52.2} \times 2\right)+\left(\frac{7.0}{52.2} \times 3\right)+\left(\frac{36.1}{52.2} \times 4\right)+\left(\frac{6.2}{52.2} \times 5\right)=3.85$

Ex. For a timothy sample having 2 stems in stage 1.1 weighing $0.1 \mathrm{~g}, 4$ stems in stage 1.3 weighing $0.2 \mathrm{~g}, 6$ stems in stage 1.5 weighing 0.3 g , 2 stems in stage 1.7 weighing $0.2 \mathrm{~g}, 12$ stems in stage 2.0 weighing 1.8 g , and 4 stems in stage 2.1 weighing 1.6 g :
$\operatorname{MSW}=\left(\frac{0.1}{4.2} \times 1.1\right)+\left(\frac{0.2}{4.2} \times 1.3\right)+\left(\frac{0.3}{4.2} \times 1.5\right)+\left(\frac{0.2}{4.2} \times 1.7\right)+\left(\frac{1.8}{4.2} \times 2.0\right)+\left(\frac{1.6}{4.2} \times 2.1\right)=1.93$

Acknowledgement

This work was in part funded through grants from the Fonds de recherche du Québec - Nature et technologies (FRQNT), from Novalait, and from the Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ).

Québec ${ }^{\text {벼⽇ }}$

- Ministère de l'Agriculture, des Pêcheries et de l'Alimentation
- Fonds de recherche du Québec - Nature et technologies

Novalait

[^0]: Timothy developmental stages: Adapted from Moore, K.J., L. E. Moser, K.P. Vogel, S.S. Waller, B.E. Johnson and J.F. Pedersen. 1991. Describing and quantifying growth stages of perennial forage grasses.

