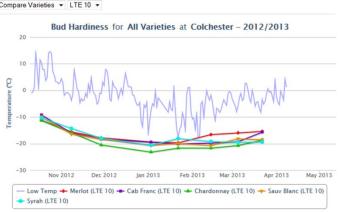


Overview



- Cold injury is a major contributor to economic loss due to poor yields, increased management costs and decreased fruit quality
- Cold hardiness is the main limiting factor for growing grapes in many regions across North America
- Research focused on cold hardiness identified as a priority by the Ontario grape and wine Industry
- Funding through AAFC Developing Innovative Agri-Products initiative (DIAP), Ontario Ministry of Economic Development and Innovation's (MEDI) Ontario Research Fund (ORF).
- Collaboration between AAFC, MEDI, GGO, CCOVI

Grapevine Cold Hardiness Research

- Vitis vinifera wine grapes are not winter hardy
- Cold hardiness is limiting factor for growing many potential cultivars
- Need to understand important factors for our climate
- Optimization of cold hardiness to deal with cold winters and weather fluctuations during acclimation & deacclimation

Overall Objectives

- Monitor grapevine cold hardiness and create an advanced web-based database - VineAlert
- Further understand how to maximize grapevine cold hardiness and improve protection methods
- Impact of key vineyard management practices and understand the most critical factors involved
- Establish a grapevine cold hardiness 'best practices' guide for our climate

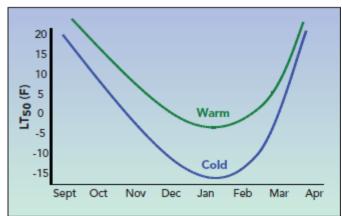
Freeze Injury

- Can occur during acclimation, mid-winter, deacclimation or post bud break
- Also associated costs of removing trunks/vines, renewing vines, replanting etc.

Types

- Easy to see: buds, green tissue
- Not so easy to identify: phloem, xylem
 - Trunk injury, shoot collapse during season
 - Crown gall

Consequences of cold injury


- Loss of fruiting buds
- Uneven or poor vegetative growth
- Inability to achieve vine balance
- Disease incidence (crown gall)
- Loss of uniformity
- Loss of consistency
- Loss of vines
- Ultimately reductions in yield, quality and \$\$\$
- Need to minimize bud loss due to cold or physical injury - proper protection methods

What is Cold Hardiness?

- Ability of plant tissue to survive freezing temperature stresses
- Very complex trait with many contributing factors
- Limited by inherent genetic potential
 - V. riparia 40C; V. vinifera -20's C
- Influenced by environmental conditions
- Highly dynamic condition

(MSU Extension Bulletin E2930, 2007)

Cold Hardiness: Dynamic condition

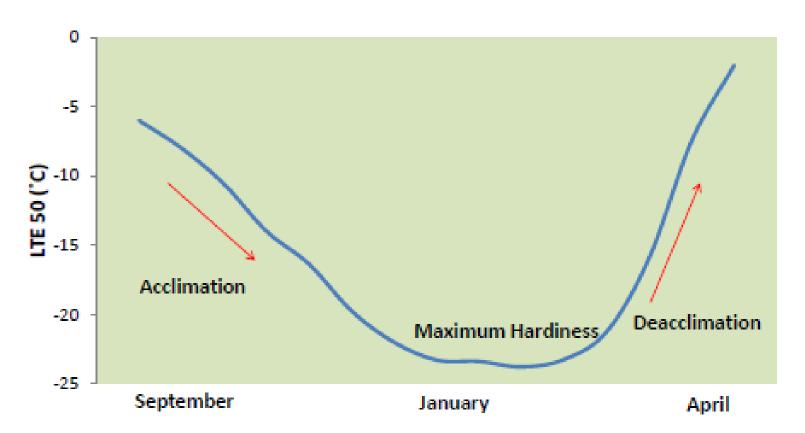
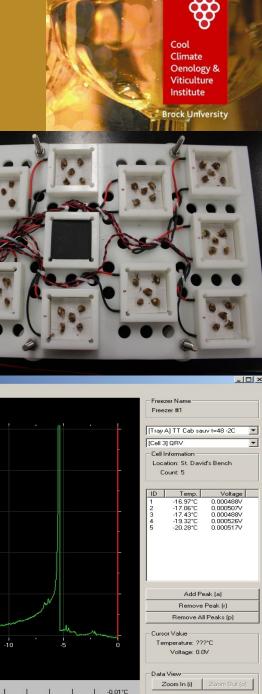
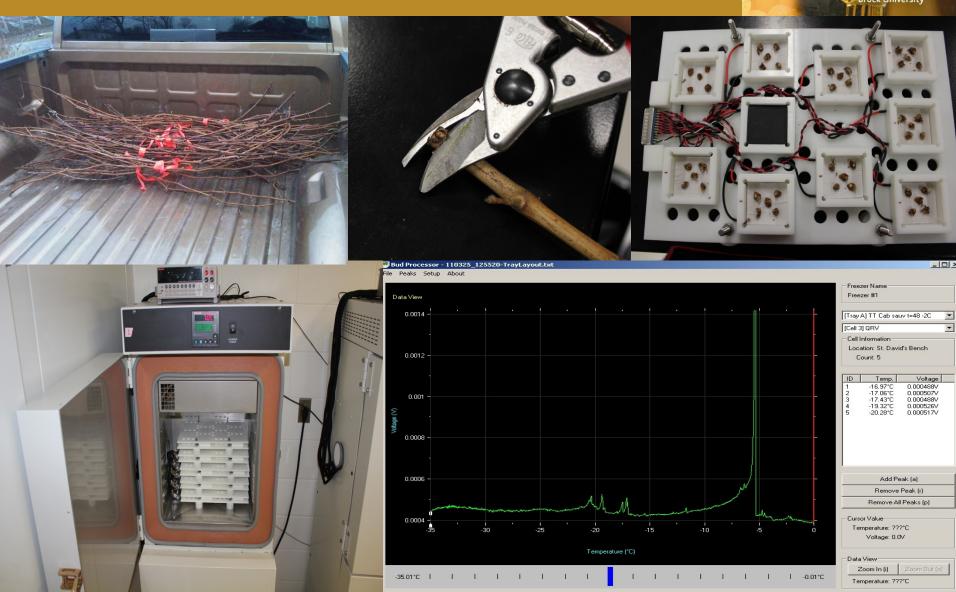




Figure 1. Profile of bud cold hardiness during the dormant season

(CCOVI VineAlert Website)

How we test cold hardiness -Differential Thermal Analysis (DTA)

- Ontario alone grows over 32 varieties (VQAapproved)
- V. vinifera (different groups of origin)
- French hybrids
- New hybrids with extreme cold hardiness
- New cultivars to our region

Variation within and between these categories

Some key Cool Climate cultivars in Ontario

Cultivar	DATE	LTE10	LTE50	LTE90
Riesling	07-Feb-13	-23.1	-24.4	-26.0
Chardonna	y 14-Feb-13	-21.4	-23.9	-25.3
Pinot noir	14-Feb-13	-21.4	-22.9	-24.1

Bordeaux varieties (2012/13)

Cultivar	DATE	LTE10	LTE50	LTE90
Malbec	07-Feb-13	-22.25	-23.7	-25.11
Petit verdot	07-Feb-13	-22.35	-23.99	-25.68
Cab Sauvignon	06-Feb-13	-21.64	-23.87	-24.97
Sauvignon blanc	14-Feb-13	-20.71	-22.03	-23.7
Merlot	05-Feb-13	-17.48	-20.08	-22.41
Cabernet franc	14-Feb-13	-21.32	-22.87	-24.25

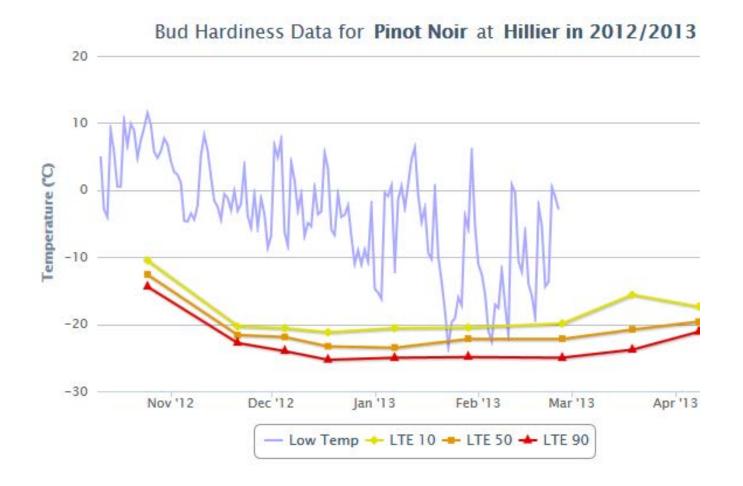
Other cultivars (2012/13)

Cultivar	DATE	LTE10	LTE50	LTE90
Gewurztraminer	07-Feb-13	-19.8	-22.6	-25.0
Semillon	07-Feb-13	-18.1	-21.4	-24.3
Tannat	07-Feb-13	-20.8	-22.5	-23.9
Tempranillo	07-Feb-13	-18.9	-21.9	-23.8
Viognier	07-Feb-13	-21.2	-23.8	-25.6
Sangiovese	07-Feb-13	-20.6	-21.9	-23.0
Auxerrois	22-Jan-13	-21.85	-24.3	-25.8

Other cultivars (2012/13)

Cultivar	DATE	LTE10	LTE50	LTE90
Regent	14-Feb-13	-20.08	-22.99	-24.49
Bianca	14-Feb-13	-22.7	-24.19	-25.52
HG01	14-Feb-13	-22.12	-23.68	-24.94
Gr7	12-Feb-13	-22.12	-23.63	-24.81
Frontenac	12-Feb-13	-24.44	-26.31	-27.35
Sabrevois	12-Feb-13	-21.46	-22.54	-24.08
Marquette	12-Feb-13	-23.19	-25.32	-26.61

Freeze protection strategies



- Wind (Wind machines, Helicopters)
 - ½ of Ontario industry protected with WM
- Burying plants or parts of plants with soil
 - All vinifera protected in PEC, ON.
- Geotextiles
- Mulches
- Heat sources (Fires, smoke, equipment)
- Sprinklers (frost protection)

Use of Geotextiles for winter protection

The need for protection

Use of Geotextiles for winter protection

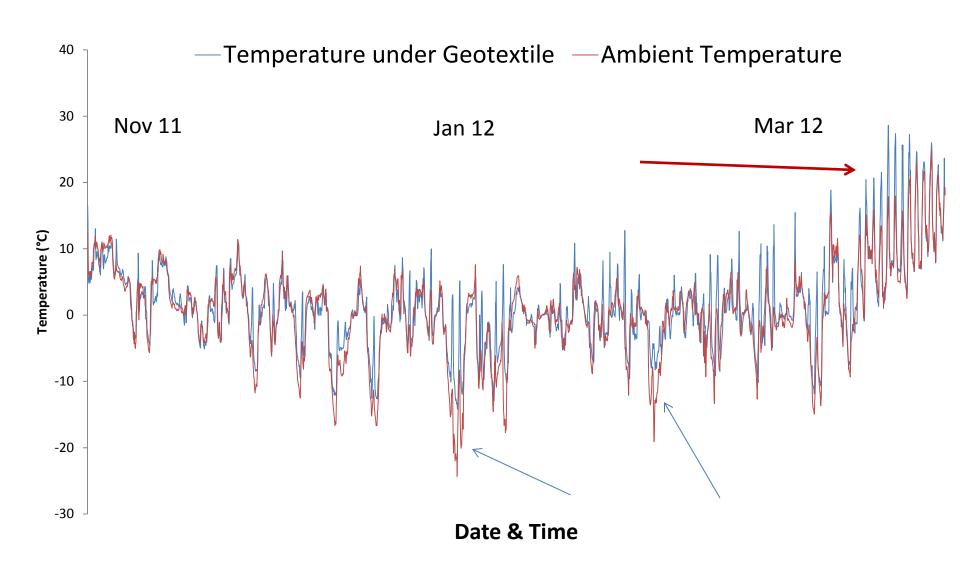
- Geotextiles are materials used for winter protection of crops
- Used in Quebec vineyards
- Interest in Ontario vineyards have increased as of late
- Why?
 - Vinifera need protection in some areas
 - Concern about damaging soils
 - Concern about damaging buds
 - Bud rot/loss
 - POOR YIELDS
 - Timing and weather

Buried canes - research from Cornell (Goffinet 2005-06)

- Experiment inspired by the severe winter injuries of 04-05
- Bud survival measured on both buried and aerial canes of Gewürztraminer,
 Pinot Gris and Cabernet
- Aerial canes in general proved more cold-hardy than buried canes, and buried canes experienced delayed shoot development once they were unburied
- Temperatures were relatively mild.

Evolution of research

- Determined that there was a need to study these materials in Ontario vineyards
- Research Questions
 - How effective are these materials at mitigating damaging cold temperatures?
 - Do these materials cause a 'greenhouse effect'?
 - What impact is there on bud hardiness and survival?
- Help determine 'best practices'
- Study in Prince Edward County
 - Sugarbush vineyards with Margaret Appleby (OMAFRA)
 - Geotextile: Hibertex Pro, Dubois Agrinovation


Geotextile experiment I

- 8 panels of vines under textile
- Randomized within Chardonnay block
- 2 methods
- Textile above laid down canes on low wire
- Textile tented above spur pruned vine
- Temperature recorded under geotextile and ambient temperature
- Buds sampled for cold hardiness

Impact of Geotextiles on temperature

Impact of geotextiles on bud hardiness

Treatment	Date	LTE10	LTE50	LTE90
	13-Dec-11	-18.7	-22.04	-23.53
Aerial canes	18-Jan-12	-20.7	-23.4	-25.2
	29-Feb-12	-21.4	-22.64	-23.58
	27-Mar-12	-6.9	-11.1	-13.1
Treatment	Date	LTE10	LTE50	LTE90
	13-Dec-11	-18.63	-21.35	-23.11
Geotextile	18-Jan-12	-16.72	-22.81	-24.52
	29-Feb-12	-20.8	-22.32	-23.57
	27-Mar-12	-6.7	-11.4	-13.5

Other findings from last year

- Materials were removed mid-March during warm period
- Vines unearthed shortly after
- Cold temperatures (-6) at end of April killed many primary buds
- Interesting observation was that panels covered with geotextile had 100% crop compared to buried vines which had around 20-30% of a normal crop at harvest

Geotextiles II The Expanded Study (2012-)

- Two types of materials
 - White Polyester felt
 - White Polyester felt with black LDPE
- Different timings of removal
 - Beginning of deacclimation (March)
 - Mid to end of deacclimation (April)

- Compared to burying of vines and control
- Two Locations PEC and Vineland
- Two cultivars Chardonnay and Pinot noir
- Temperatures monitored using dataloggers

The materials

Canes tied below materials Climate Oenology & Viticulture Institute **Brock University**

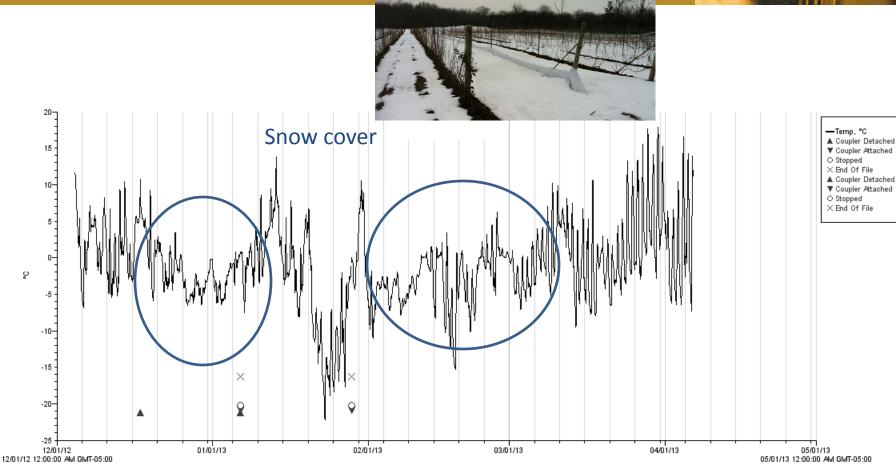
Vine microclimate temperatures during acclimation to midwinter using different grapevine protection methods within Prince Edward County. Wellington, ON. (2012-13).

November (last 2 weeks of the month)						
	Ambient	Polyester felt	Polyester felt with black LDPE	Under Soil		
Monthly mean temperature (°C)	1.01	1.14	1.15	1.76		
Absolute Maximum temperature (°C)	12.10	16.54	13.79	9.63		
Absolute Minimum temperature(°C)	-8.67	-7.27	-5.95	-2.95		
		December				
	Ambient	Polyester felt	Polyester felt with black LDPE	Under Soil		
Monthly mean temperature (°C)	-0.26	-1.57	0.53	1.22		
Absolute Maximum temperature (°C)	15.34	9.26	14.7	10.54		
Absolute Minimum temperature(°C)	-11.33	-6.55	-6.99	-3.07		
		January				
	Ambient	Polyester felt	Polyester felt with black LDPE	Under Soil		
Monthly mean temperature (°C)	-3.47	-2.96	-2.78	-1.54		
Absolute Maximum temperature (°C)	13.38	17.42	16.37	8.74		
Absolute Minimum temperature(°C)	-23.41	-19.07	-19.38	-10.27		

Acclimation and Mid-Winter Hardiness levels

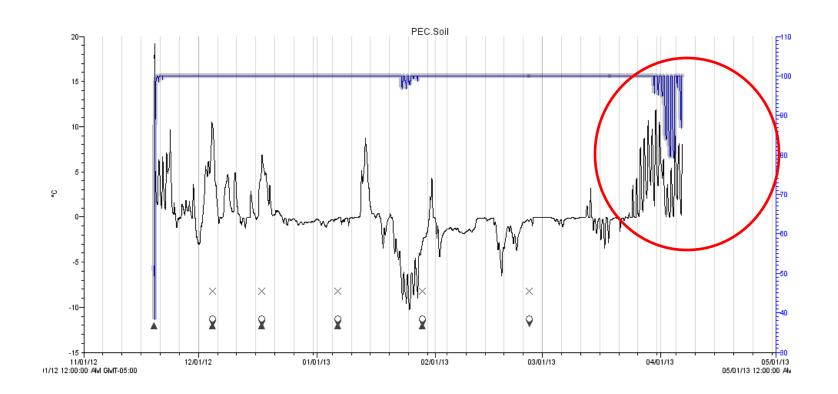
			Ch	nardonnay				
Treatment	Date	LTE10	LTE50	LTE90	Date	LTE10	LTE50	LTE90
Control	05-Dec- 12	-21.37	-23.38	-25.15	29-Jan- 13	-17.81	-23.75	-25.58
Polyester felt with black LDPE	05-Dec- 12	-20.7	-22.56	-25.19	29-Jan- 13	-17.54	-23.73	-26.29
Polyester C	05-Dec- 12	-17.81	-21.69	-23.64	29-Jan- 13	-20.49	-23.84	-25.79
				Pinot	Noir			
Treatment	Date	LTE10	LTE50	LTE90	Date	LTE10	LTE50	LTE90
Control	05-Dec- 12	-19.35	-23.31	-25.01	29-Jan- 13	-19.14	-24.55	-26.25
Polyester felt with black LDPE	05-Dec- 12	-19.98	-22.57	-24.09	29-Jan- 13	-18.79	-24.01	-26.12
Polyester felt	05-Dec- 12	-20.54	-22.63	-24.14	29-Jan- 13	-22.57	-24.79	-25.89

Table 3. Predicted grapevine bud cold hardiness ratings for Chardonnay and Pinot noir using different protection strategies within Prince Edward County. Wellington, ON. (2012-13).

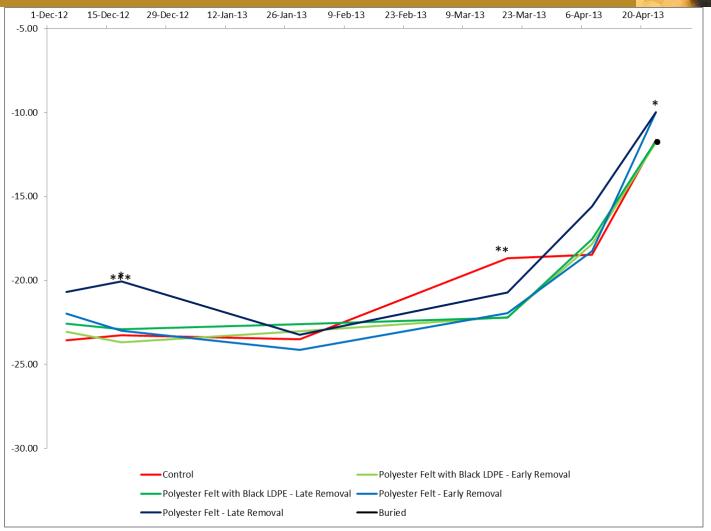

Vine microclimate temperatures during mid to late winter months using different grapevine protection methods within Prince Edward County. Wellington, ON. (2012-13).

		February		
	Ambient	Polyester felt	Polyester felt with black LDPE	Under Soil
Monthly mean temperature (°C)	-6.54	-3.74	-3.16	-1.52
Absolute Maximum temperature (°C)	5.54	6.84	5.95	-0.09
Absolute Minimum temperature(°C)	-25.38	-17.64	-13.97	-6.52
temperature(c)				
		March		
	Ambient	Polyester felt	Polyester felt with black LDPE	Under Soil
Monthly mean temperature (°C)	-1.269	-0.558	-0.248	-0.338
Absolute Maximum temperature (°C)	11.297	10.687	13.185	3.142
Absolute Minimum temperature(°C)	-11.79	-9.47	-11.11	-3.48

Temperatures during dormant period



What lies Beneath?



 Most interesting story is what happens below soil and materials with warmer temps

Impact of protection strategy on bud hardiness (Chardonnay)

Cold hardiness dynamics (LTE50) of Chardonnay using different protection methods within Prince Edward County. Wellington, ON. (2012-13). *, **, *** indicate significance at p<0.05, p<0.01, p<0.001, respectively.

Deacclimation and Mid-Winter Hardiness levels

Chardonnay							
Treatment	Date	LTE10	LTE50	LTE90			
Control	08-Apr-13	-16.26	-18.2	-20.77			
Polyester felt with black LDPE (removed)	08-Apr-13	-15.08	-17.36	-20.24			
Polyester felt with black LDPE	08-Apr-13	-13.95	-16.83	-20.04			
Polyester felt (removed)	08-Apr-13	-16.45	-18.57	-20.41			
Polyester felt	08-Apr-13	-14.28	-15.48	-17.52			

Predicted grapevine bud cold hardiness ratings for Chardonnay and Pinot noir using different protection strategies within Prince Edward County. Wellington, ON. (2012-13).

Findings after removal of materials Impact on Bud break

		Chardonnay			
	Polyester felt - Early Removal	Polyester felt - Late Removal	Polyester felt with black LDPE - Early Removal	Polyester felt with black LDPE - Late Removal	Control
% Budbreak	51.1a	32.4b	45.1ab	32.1b	46.9a
		Pinot noir			
	Polyester felt - Early Removal	Polyester felt - Late Removal	Polyester felt with black LDPE - Early Removal	Polyester felt with black LDPE - Late Removal	Control
% Budbreak	27.2a	35.7a	32.8a	45.8a	34.2a

Influence of protective strategy on budbreak on May 7, 2013. Vineland, ON.

Influence of protection strategy on yield components

		Chardonnay			
	Polyester felt - Early Removal	Polyester felt - Late Removal	Polyester felt with black LDPE - Early Removal	Polyester felt with black LDPE - Late Removal	Buried under soil
No. of shoots/vine	12	12	11	11	10
No. of clusters/ vine	1 3a	12 a	14 a	12 a	6b
		Pinot noir			
	Polyester felt - Early Removal	Polyester felt - Late Removal	Polyester felt with black LDPE - Early Removal	Polyester felt with black LDPE - Late Removal	Buried under soil
No. of shoots/vine	13a	11ab	9b	13a	9b
No. of clusters/ vine	1 5a	11 a	4b*	10a	3b

Influence of protective strategy on yield components. Wellington, ON.

^{*} material was removed from vines prematurely due to high winds

Preliminary observations and thoughts

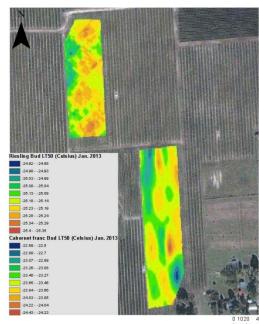
- Geotextiles do moderate minimum temperature extremes
- Snow cover remains on vines longer with white geotextiles than buried vines
 - This improves hardiness and temperature moderations
- Materials can improve cold hardiness at certain times of year
- Some impact on bud hardiness (maximum)
- Yields improved considerably and vine health looks better (less rot, better periderm, less crown gall).

Preliminary observations and thoughts

- Greenhouse effects when soils are warmer (fall, late winter/spring)
- Timing and removal of application
 - Implications of too early or too late
- Logistics
- Economics
 - cost factors and durability
- Another factor that has appeared in some areas.....

Conclusions and final thoughts

- Cold Injury is a major threat to the grape and tender fruit sectors
- Understanding how to get optimal vine hardiness and the best winter protection
- Critical for vine balance, uniformity, consistency and ultimately quality



Conclusion

- Research (experimentation), outreach, innovation are key to success for pushing boundaries, improving quality and profits
- At one point no one thought wind machines would help so much in ON....what's next????

Acknowledgments

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Thank you for your attention.

